製品をチェック

無償トライアル:

無償トライアルへ

製品の情報と無償トライアルへ:

Backlog Python Connector

Backlog へのデータ連携用のPython Connector ライブラリ。Pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにBacklog をシームレスに統合。

データ連携でお困りですか?

お問い合わせ

SQLAlchemy ORM を使って、Python でBacklog データに連携


CData Python Connector for Backlog を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でBacklog にOR マッピング可能に。


古川えりか
コンテンツスペシャリスト

backlog ロゴ画像

Python

python ロゴ画像
Python ロゴ画像

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for Backlog は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Backlog にデータ連携するPython アプリケーションを構築し、Backlog データをビジュアライズできます。 本記事では、SQLAlchemy でBacklog に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムBacklog データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Backlog に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Backlog 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Backlog への接続

Backlog データへの連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Backlog への接続に使用できる認証方法は、API キーおよびOAuth の2つです。

API キー認証

ApiKey およびURL をログインクレデンシャルに設定します。 ApiKey を取得するには:

  1. Backlog の個人設定ページを開きます。
  2. 「API」セクションをクリックして、「メモ」にAPI キーについての説明を追加し、「登録」ボタンをクリックします。トークンが生成されます。
  3. ApiKey にAPI キーを指定します。
  4. URL はBacklog のテナントURL から取得できます。

OAuth 認証

ユーザー名やパスワードへのアクセスを保有していない場合や、それらを使いたくない場合にはOAuth ユーザー同意フローを使用します。認証方法については、ヘルプドキュメントを参照してください。

以下の手順でSQLAlchemy をインストールして、Python オブジェクトからBacklog に接続します。

必要なモジュールのインストール

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でBacklog データをモデル化

次は、接続文字列で接続を確立します。create_engine 関数を使って、Backlog データに連携するEngne を作成します。

engine = create_engine("backlog///?ApiKey=YOUR_API_KEY&Url=https://yourURL.backlog.com")

Backlog データのマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Issues テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Issues(base):
	__tablename__ = "Issues"
	Id = Column(String,primary_key=True)
	ProjectID = Column(String)
	...

Backlog データをクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("backlog///?ApiKey=YOUR_API_KEY&Url=https://yourURL.backlog.com")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Issues).filter_by(Id="1"):
	print("Id: ", instance.Id)
	print("ProjectID: ", instance.ProjectID)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Issues_table = Issues.metadata.tables["Issues"]
for instance in session.execute(Issues_table.select().where(Issues_table.c.Id == "1")):
	print("Id: ", instance.Id)
	print("ProjectID: ", instance.ProjectID)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

Backlog データの挿入(INSERT)

Backlog データへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、Backlog にすべての追加インスタンスを送ります。

new_rec = Issues(Id="placeholder", Id="1")
session.add(new_rec)
session.commit()

Backlog データを更新(UPDATE)

Backlog データの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、Backlog にレコードを追加します。

updated_rec = session.query(Issues).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.Id = "1"
session.commit()

Backlog データを削除(DELETE)

Backlog データの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Issues).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

製品の無償トライアル情報

Backlog Python Connector の30日の無償トライアル をぜひダウンロードして、Backlog データへの接続をPython アプリやスクリプトから簡単に作成しましょう。