製品をチェック

無償トライアル:

無償トライアルへ

製品の情報と無償トライアルへ:

BigCommerce Python Connector

BigCommerce へのデータ連携用のPython Connector ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにBigCommerce をシームレスに統合。

データ連携でお困りですか?

お問い合わせ

Python のDash ライブラリを使って、BigCommerce データ に連携するウェブアプリケーションを開発


CData Python Connector for BigCommerce を使って、BigCommerce にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。


bigcommerce ロゴ画像
python ロゴ画像

Python

Python ロゴ画像

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for BigCommerce を使うことで、pandas モジュールとDash フレームワークでBigCommerce にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、BigCommerce に連携して、BigCommerce data をビジュアライズするシンプルなウエブアプリを作ります。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムBigCommerce data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。BigCommerce に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接BigCommerce 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

BigCommerce への接続

BigCommerce data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

BigCommerce 認証は標準のOAuth フローに基づいています。

Store ID の取得

BigCommerce Store に接続するには、StoreId が必要です。Store Id を確認するには、以下の手順に従ってください。

  1. BigCommerce アカウントにログインします。
  2. ホームページから「Advanced Settings」->「API Accounts」 を選択します。
  3. 「Create API Account」->「Create V2/V3 API Token」をクリックします。
  4. 画面にAPI Path という名前のテキストボックスが表示されます。
  5. テキストボックス内に、次の構造のURL が表示されます:https://api.bigcommerce.com/stores/{Store Id}/v3。
  6. 上記で示したように、Store Id は'stores/' と'/v3' パスパラメータの間にあります。
  7. Store Id を取得したら、「キャンセル」 をクリックするか、まだ持っていない場合はAPI Account の作成に進むことができます。

パーソナルアクセストークンの取得

加えて、自分のデータをテストおよびアクセスするには、個人用トークンを取得する必要があります。個人用トークンを取得する方法は次のとおりです。

  1. BigCommerce アカウントにログインします。
  2. ホームページから「Advanced Settings」->「API Accounts」 を選択します。
  3. 「Create API Account」->「Create V2/V3 API Token」をクリックします。
  4. アカウント名を入力します。
  5. 作成するAPI Account の「OAuth Scopes」を選択します。本製品 は"None" とマークされたデータにアクセスできません。また、"read-only" とマークされたデータを変更できません。
  6. 「保存」をクリックします。

BigCommerce への認証

次に、以下を設定してデータに接続できます。
  • StoreId:API Path テキストボックスから取得したStore ID に設定。
  • OAuthAccessToken:生成したトークンに設定。
  • InitiateOAuth:OFF に設定。

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でBigCommerce にアクセスします。

必要なモジュールのインストール

pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でBigCommerce データ をビジュアライズ

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.bigcommerce as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData BigCommerce Connector にBigCommerce data との接続を確立します。

cnxn = mod.connect("OAuthClientId=YourClientId; OAuthClientSecret=YourClientSecret; StoreId='YourStoreID'; CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")

BigCommerce にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-bigcommerceedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、BigCommerce data をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.FirstName, y=df.LastName, name='FirstName')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='BigCommerce Customers Data', barmode='stack')
		})
], className="container")

アプリをセットアップして、実行n

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。Python コードの最後はこのようです。

if __name__ == '__main__':
    app.run_server(debug=True)

では、Python でウェブアプリを稼働させて、ブラウザでBigCommerce data を見てみましょう。

python bigcommerce-dash.py
BigCommerce data in a Dash web app (Salesforce is shown).

製品の無償トライアル情報

BigCommerce Python Connector の30日の無償トライアル をぜひダウンロードして、BigCommerce data への接続をPython アプリやスクリプトから簡単に作成しましょう。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.bigcommerce as mod
import plotly.graph_objs as go

cnxn = mod.connect("OAuthClientId=YourClientId; OAuthClientSecret=YourClientSecret; StoreId='YourStoreID'; CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

df = pd.read_sql("SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'", cnxn)
app_name = 'dash-bigcommercedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.FirstName, y=df.LastName, name='FirstName')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='BigCommerce Customers Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)