本記事では CData サポート担当からこんなことを聞かれたらどこを確認すべきか?という観点で、よく頂くお問合せ内容をご紹介します。
記事はこちら →Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for DynamicsGP を使うことで、pandas モジュールとDash フレームワークでDynamics GP にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、Dynamics GP に連携して、Dynamics GP data をビジュアライズするシンプルなウエブアプリを作ります。
CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムDynamics GP data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Dynamics GP に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Dynamics GP 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。
Dynamics GP data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。
認証するには、User およびPassword 接続プロパティを設定します。
接続するには、Url をWeb サービスのエンドポイントに設定します。例えば、http://{servername}:{port}/Dynamics/GPService です。さらに、CompanyId を設定します。この値は組織のセットアップウィンドウで「ツール」->「設定」->「組織」をクリックして取得できます。
デフォルトでデータサマリを返し、パフォーマンスを節約します。Line items などの詳細を返すには、LookupIds をtrue に設定します。ただしエンティティは一度に一つずつ返される必要があります。
以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でDynamics GP にアクセスします。
pip で必要なモジュールおよびフレームワークをインストールします:
pip install pandas pip install dash pip install dash-daq
必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。
まず、CData Connector を含むモジュールをインポートします:
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.dynamicsgp as mod import plotly.graph_objs as go
接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData Dynamics GP Connector にDynamics GP data との接続を確立します。
cnxn = mod.connect("CompanyId=mycompanyId;user=myuser;password=mypassword;URL= http://{servername}:{port}/Dynamics/GPService;")
read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。
df = pd.read_sql("""SELECT CustomerName, TotalAmount FROM SalesInvoice WHERE CustomerName = 'Bob'""", cnxn)
DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。
app_name = 'dash-dynamicsgpedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash'
次に、Dynamics GP data をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。
trace = go.Bar(x=df.CustomerName, y=df.TotalAmount, name='CustomerName') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='Dynamics GP SalesInvoice Data', barmode='stack') }) ], className="container")
接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。Python コードの最後はこのようです。
if __name__ == '__main__': app.run_server(debug=True)
では、Python でウェブアプリを稼働させて、ブラウザでDynamics GP data を見てみましょう。
python dynamicsgp-dash.py
Dynamics GP Python Connector の30日の無償トライアル をぜひダウンロードして、Dynamics GP data への接続をPython アプリやスクリプトから簡単に作成しましょう。
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.dynamicsgp as mod import plotly.graph_objs as go cnxn = mod.connect("CompanyId=mycompanyId;user=myuser;password=mypassword;URL= http://{servername}:{port}/Dynamics/GPService;") df = pd.read_sql("SELECT CustomerName, TotalAmount FROM SalesInvoice WHERE CustomerName = 'Bob'", cnxn) app_name = 'dash-dynamicsgpdataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash' trace = go.Bar(x=df.CustomerName, y=df.TotalAmount, name='CustomerName') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='Dynamics GP SalesInvoice Data', barmode='stack') }) ], className="container") if __name__ == '__main__': app.run_server(debug=True)