本記事では CData サポート担当からこんなことを聞かれたらどこを確認すべきか?という観点で、よく頂くお問合せ内容をご紹介します。
記事はこちら →Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for ApacheHive は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Hive にデータ連携するPython アプリケーションを構築し、Hive data をビジュアライズできます。 本記事では、SQLAlchemy でHive に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムHive data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Hive に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Hive 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。
Hive data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。
Apache Hive への接続を確立するには以下を指定します。
以下の手順でSQLAlchemy をインストールして、Python オブジェクトからHive に接続します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、Hive data に連携するEngne を作成します。
engine = create_engine("apachehive///?Server=127.0.0.1&Port=10000&TransportMode=BINARY")
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Customers テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Customers(base): __tablename__ = "Customers" City = Column(String,primary_key=True) CompanyName = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("apachehive///?Server=127.0.0.1&Port=10000&TransportMode=BINARY") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Customers).filter_by(Country="US"): print("City: ", instance.City) print("CompanyName: ", instance.CompanyName) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
Customers_table = Customers.metadata.tables["Customers"] for instance in session.execute(Customers_table.select().where(Customers_table.c.Country == "US")): print("City: ", instance.City) print("CompanyName: ", instance.CompanyName) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
Hive data への挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、Hive にすべての追加インスタンスを送ります。
new_rec = Customers(City="placeholder", Country="US") session.add(new_rec) session.commit()
Hive data の更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、Hive にレコードを追加します。
updated_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.Country = "US" session.commit()
Hive data の削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
Hive Python Connector の30日の無償トライアル をぜひダウンロードして、Hive data への接続をPython アプリやスクリプトから簡単に作成しましょう。