今すぐお試しください!

製品の詳細CData Python Connector for JSON を確認して、無償評価版をダウンロード:

今すぐダウンロード

Dash を使って、JSON Services に連携するウェブアプリケーションを開発

CData Python Connector for JSON を使って、JSON にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for JSON を使うことで、pandas モジュールとDash フレームワークでJSON にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、JSON に連携して、JSON services をビジュアライズするシンプルなウエブアプリを作ります。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムJSON services データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。JSON に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接JSON 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

JSON Services への接続

JSON services への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

See the Getting Started chapter in the data provider documentation to authenticate to your data source: The data provider models JSON APIs as bidirectional database tables and JSON files as read-only views (local files, files stored on popular cloud services, and FTP servers). The major authentication schemes are supported, including HTTP Basic, Digest, NTLM, OAuth, and FTP. See the Getting Started chapter in the data provider documentation for authentication guides.

After setting the URI and providing any authentication values, set DataModel to more closely match the data representation to the structure of your data.

The DataModel property is the controlling property over how your data is represented into tables and toggles the following basic configurations.

  • Document (default): Model a top-level, document view of your JSON data. The data provider returns nested elements as aggregates of data.
  • FlattenedDocuments: Implicitly join nested documents and their parents into a single table.
  • Relational: Return individual, related tables from hierarchical data. The tables contain a primary key and a foreign key that links to the parent document.

See the Modeling JSON Data chapter for more information on configuring the relational representation. You will also find the sample data used in the following examples. The data includes entries for people, the cars they own, and various maintenance services performed on those cars.

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でJSON にアクセスします。

必要なモジュールのインストール

pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でJSON Services をビジュアライズ

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.json as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData JSON Connector にJSON services との接続を確立します。

cnxn = mod.connect("URI=C:\people.json;DataModel=Relational;")

JSON にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-jsonedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、JSON services をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.[ personal.name.first ], y=df.[ personal.name.last ], name='[ personal.name.first ]')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='JSON people Data', barmode='stack')
		})
], className="container")

アプリをセットアップして、実行n

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。Python コードの最後はこのようです。

if __name__ == '__main__':
    app.run_server(debug=True)

では、Python でウェブアプリを稼働させて、ブラウザでJSON services を見てみましょう。

python json-dash.py

製品の無償トライアル情報

JSON Python Connector の30日の無償トライアル をぜひダウンロードして、JSON services への接続をPython アプリやスクリプトから簡単に作成しましょう。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.json as mod
import plotly.graph_objs as go

cnxn = mod.connect("URI=C:\people.json;DataModel=Relational;")

df = pd.read_sql("SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'", cnxn)
app_name = 'dash-jsondataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.[ personal.name.first ], y=df.[ personal.name.last ], name='[ personal.name.first ]')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='JSON people Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)
 
 
ダウンロード