本記事では CData サポート担当からこんなことを聞かれたらどこを確認すべきか?という観点で、よく頂くお問合せ内容をご紹介します。
記事はこちら →Apache Spark は大規模データ処理のための高速で一般的なエンジンです。CData JDBC Driver for ApacheKafka と組み合わせると、Spark はリアルタイムKafka にデータ連携して処理ができます。ここでは、Spark シェルに接続してKafka をクエリする方法について説明します。
CData JDBC Driver は、最適化されたデータ処理がドライバーに組み込まれているため、リアルタイムKafka と対話するための高いパフォーマンスを提供します。Kafka に複雑なSQL クエリを発行すると、ドライバーはフィルタや集計など、サポートされているSQL操作を直接Kafka にプッシュし、組込みSQL エンジンを使用してサポートされていない操作(SQL 関数やJOIN 操作)をクライアント側で処理します。組み込みの動的メタデータクエリを使用すると、ネイティブデータ型を使用してKafka を操作して分析できます。
CData JDBC Driver for ApacheKafka インストーラをダウンロードし、パッケージを解凍し、JAR ファイルを実行してドライバーをインストールします。
$ spark-shell --jars /CData/CData JDBC Driver for ApacheKafka/lib/cdata.jdbc.apachekafka.jar
BootstrapServers およびTopic プロパティを設定して、Apache Kafka サーバーのアドレスと、対話するトピックを指定します。
サーバー証明書を信頼する必要がある場合があります。そのような場合は、必要に応じてTrustStorePath およびTrustStorePassword を指定してください。
JDBC 接続文字列URL の作成には、Kafka JDBC Driver にビルトインされたデザイナを使用できます。JAR ファイルをダブルクリックするか、コマンドラインでJAR ファイルを実行するとデザイナが開きます。
java -jar cdata.jdbc.apachekafka.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
scala> val apachekafka_df = spark.sqlContext.read.format("jdbc").option("url", "jdbc:apachekafka:User=admin;Password=pass;BootStrapServers=https://localhost:9091;Topic=MyTopic;").option("dbtable","SampleTable_1").option("driver","cdata.jdbc.apachekafka.ApacheKafkaDriver").load()
Kafka をテンポラリーテーブルとして登録します:
scala> apachekafka_df.registerTable("sampletable_1")
データに対して、次のようなカスタムSQL クエリを実行します:
scala> apachekafka_df.sqlContext.sql("SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = 100").collect.foreach(println)
You will see the results displayed in the console, similar to the following:
CData JDBC Driver for ApacheKafka をApache Spark で使って、Kafka に対して、複雑かつハイパフォーマンスなクエリを実行できます。是非、30日の無償評価版 をダウンロードしてお試しください。