AWS Glue Jobs からSpark データにJDBC 経由でデータ連携

詳細情報をご希望ですか?

無償トライアル:

ダウンロードへ

製品の詳細情報へ:

Apache Spark JDBC Driver

Apache Spark 連携のパワフルなJava アプリケーションを素早く作成して配布。



Amazon S3 でホストされているCData JDBC ドライバーを使用してAWS Glue ジョブからSpark にデータ連携。

AWS Glue はAmazon のETL サービスであり、これを使用すると、簡単にデータプレパレーションを行い、ストレージおよび分析用に読み込むことができます。AWS Glue と一緒にPySpark モジュールを使用すると、JDBC 接続を経由でデータを処理するジョブを作成し、そのデータをAWS データストアに直接読み込むことができます。ここでは、CData JDBC Driver for Spark をAmazon S3 バケットにアップロードし、Spark からデータを抽出してCSV ファイルとしてS3 に保存するためのAWS Glue ジョブを作成して実行する方法について説明します。

※製品について詳しい情報をご希望の方は以下からお進みください。

CData JDBC driver for Spark をAmazon S3 バケットにアップロード

CData JDBC Driver for Spark をAWS Glue から使用するには、ドライバーの.jar ファイル(および必要なライセンスファイル)をAmazon S3 のバケットに配置する必要があります。

  1. Amazon S3 コンソールを開きます。
  2. バケットを選択、もしくは作成します。
  3. [アップロード]をクリックします。
  4. JDBC Driver の.jar ファイル(cdata.jdbc.sparksql.jar) をインストールディレクトリのlib フォルダから選択してアップロードします。

Amazon Glue Job を設定

  1. [分析]->[AWS Glue]をクリックします。
  2. AWS Glue コンソールで、[ETL]->[ジョブ]をクリックします。
  3. [ジョブの追加]をクリックして新しいGlue ジョブを作成します。
  4. ジョブのプロパティを設定します:
    • 名前: SparkSQLGlueJob など任意のジョブ名
    • IAM ロール: AWSGlueServiceRole もしくは AmazonS3FullAccessSelect の権限があるIAM ロールを設定(JDBC Driver がAmazon S3 バケットにあるため)。
    • Type: [Spark]を選択。
    • Glue version: ドロップダウンからバージョンを選択。
    • このジョブ実行: [ユーザーが作成する新しいスクリプト]を選択。
      スクリプトプロパティの設定:
      • スクリプトファイル名: GlueSparkSQLJDBC などのスクリプトファイル名。
      • スクリプトが保存されているS3 パス: S3 バケットを入力もしくは選択。
      • 一時ディレクトリ: S3 バケットを入力もしくは選択
    • ETL 言語: [Python]を選択
    • セキュリティ設定、スクリプトライブラリおよびジョブパラメータを展開。依存JARS パスは、JDBC の.jar ファイルをアップロードしたS3 バケットに設定。.jar ファイル名 s3://mybucket/cdata.jdbc.sparksql.jar も含めます。
  5. [次へ]をクリックすると、ほかのAWS エンドポイントへの接続オプション追加ができます。Redshift、MySQL などに接続する際にはここで接続を作成できます。
  6. [ジョブの保存とスクリプトの編集]をクリックします。
  7. 開いたエディタで、Python スクリプトを記述します。サンプルは以下です。

サンプルGlue スクリプト

CData JDBC driver でSpark に接続するには、JDBC URL を作成します。さらにライセンスとしてJDBC URL にRTK プロパティを設定する必要があります。RTK は通常のライセンスと異なりますので、CData まで直接ご連絡をください。

SparkSQL への接続

SparkSQL への接続を確立するには以下を指定します。

  • Server:SparkSQL をホストするサーバーのホスト名またはIP アドレスに設定。
  • Port:SparkSQL インスタンスへの接続用のポートに設定。
  • TransportMode:SparkSQL サーバーとの通信に使用するトランスポートモード。有効な入力値は、BINARY およびHTTP です。デフォルトではBINARY が選択されます。
  • AuthScheme:使用される認証スキーム。有効な入力値はPLAIN、LDAP、NOSASL、およびKERBEROS です。デフォルトではPLAIN が選択されます。

Databricks への接続

Databricks クラスターに接続するには、以下の説明に従ってプロパティを設定します。Note:必要な値は、「クラスター」に移動して目的のクラスターを選択し、 「Advanced Options」の下にある「JDBC/ODBC」タブを選択することで、Databricks インスタンスで見つけることができます。

  • Server:Databricks クラスターのサーバーのホスト名に設定。
  • Port:443
  • TransportMode:HTTP
  • HTTPPath:Databricks クラスターのHTTP パスに設定。
  • UseSSL:True
  • AuthScheme:PLAIN
  • User:'token' に設定。
  • Password:個人用アクセストークンに設定(値は、Databricks インスタンスの「ユーザー設定」ページに移動して「アクセストークン」タブを選択することで取得できます)。

ビルトイン接続文字列デザイナー

JDBC URL の作成をサポートするビルトインの接続文字列デザイナーがあります。ドライバーの.jar ファイルをダブルクリックするか、コマンドラインで.jar ファイルを実行するとデザイナーが開きます。

java -jar cdata.jdbc.sparksql.jar

必要項目を入力すると、デザインs-下部に接続文字列が生成されますのでクリップボードにコピーして使います。

CData JDBC driver をPySpark で使用して、AWS Glue モジュールでSpark データを取得して、S3 にCSV 形式で保存するシンプルなスクリプト例は以下です。.

import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.dynamicframe import DynamicFrame from awsglue.job import Job args = getResolvedOptions(sys.argv, ['JOB_NAME']) sparkContext = SparkContext() glueContext = GlueContext(sparkContext) sparkSession = glueContext.spark_session ##Use the CData JDBC driver to read Spark data from the Customers table into a DataFrame ##Note the populated JDBC URL and driver class name source_df = sparkSession.read.format("jdbc").option("url","jdbc:sparksql:RTK=5246...;Server=127.0.0.1;").option("dbtable","Customers").option("driver","cdata.jdbc.sparksql.SparkSQLDriver").load() glueJob = Job(glueContext) glueJob.init(args['JOB_NAME'], args) ##Convert DataFrames to AWS Glue's DynamicFrames Object dynamic_dframe = DynamicFrame.fromDF(source_df, glueContext, "dynamic_df") ##Write the DynamicFrame as a file in CSV format to a folder in an S3 bucket. ##It is possible to write to any Amazon data store (SQL Server, Redshift, etc) by using any previously defined connections. retDatasink4 = glueContext.write_dynamic_frame.from_options(frame = dynamic_dframe, connection_type = "s3", connection_options = {"path": "s3://mybucket/outfiles"}, format = "csv", transformation_ctx = "datasink4") glueJob.commit()

Glueジョブを実行する

スクリプト記述後、Glue ジョブを実行します。実行した取得/ロードのジョブが完了するとAWS Glue コンソールのジョブページでステータスが確認できます。成功するとS3 バケットにSpark データのCSV ファイルが生成されています。

このようにCData JDBC Driver for Spark をAWS Glue で使用することで、Spark データをAWS Glue で自在に扱うことができます。Glue の外部データへの接続性を拡張するJDBC Driver を是非お試しください。