Ready to get started?

Download a free trial of the Greenplum Connector to get started:

 Download Now

Learn more:

Greenplum Icon Greenplum Python Connector

Python Connector Libraries for Greenplum Data Connectivity. Integrate Greenplum with popular Python tools like Pandas, SQLAlchemy, Dash & petl.

How to Visualize Greenplum Data in Python with pandas



Use pandas and other modules to analyze and visualize live Greenplum data in Python.

The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for Greenplum, the pandas & Matplotlib modules, and the SQLAlchemy toolkit, you can build Greenplum-connected Python applications and scripts for visualizing Greenplum data. This article shows how to use the pandas, SQLAlchemy, and Matplotlib built-in functions to connect to Greenplum data, execute queries, and visualize the results.

With built-in optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Greenplum data in Python. When you issue complex SQL queries from Greenplum, the driver pushes supported SQL operations, like filters and aggregations, directly to Greenplum and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Connecting to Greenplum Data

Connecting to Greenplum data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.

To connect to Greenplum, set the Server, Port (the default port is 5432), and Database connection properties and set the User and Password you wish to use to authenticate to the server. If the Database property is not specified, the default database for the authenticate user is used.

Follow the procedure below to install the required modules and start accessing Greenplum through Python objects.

Install Required Modules

Use the pip utility to install the pandas & Matplotlib modules and the SQLAlchemy toolkit:

pip install pandas
pip install matplotlib
pip install sqlalchemy

Be sure to import the module with the following:

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Visualize Greenplum Data in Python

You can now connect with a connection string. Use the create_engine function to create an Engine for working with Greenplum data.

engine = create_engine("greenplum:///?User=user&Password=admin&Database=dbname&Server=127.0.0.1&Port=5432")

Execute SQL to Greenplum

Use the read_sql function from pandas to execute any SQL statement and store the resultset in a DataFrame.

df = pandas.read_sql("SELECT Freight, ShipName FROM Orders WHERE ShipCountry = 'USA'", engine)

Visualize Greenplum Data

With the query results stored in a DataFrame, use the plot function to build a chart to display the Greenplum data. The show method displays the chart in a new window.

df.plot(kind="bar", x="Freight", y="ShipName")
plt.show()

Free Trial & More Information

Download a free, 30-day trial of the CData Python Connector for Greenplum to start building Python apps and scripts with connectivity to Greenplum data. Reach out to our Support Team if you have any questions.



Full Source Code

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("greenplum:///?User=user&Password=admin&Database=dbname&Server=127.0.0.1&Port=5432")
df = pandas.read_sql("SELECT Freight, ShipName FROM Orders WHERE ShipCountry = 'USA'", engine)

df.plot(kind="bar", x="Freight", y="ShipName")
plt.show()