Ready to get started?

Download a free trial of the Jira Service Management Driver to get started:

 Download Now

Learn more:

Jira Service Management Icon Jira Service Management JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with Jira Service Management.

How to integrate Jira Service Management with Apache Airflow



Access and process Jira Service Management data in Apache Airflow using the CData JDBC Driver.

Apache Airflow supports the creation, scheduling, and monitoring of data engineering workflows. When paired with the CData JDBC Driver for Jira Service Management, Airflow can work with live Jira Service Management data. This article describes how to connect to and query Jira Service Management data from an Apache Airflow instance and store the results in a CSV file.

With built-in optimized data processing, the CData JDBC Driver offers unmatched performance for interacting with live Jira Service Management data. When you issue complex SQL queries to Jira Service Management, the driver pushes supported SQL operations, like filters and aggregations, directly to Jira Service Management and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Jira Service Management data using native data types.

Configuring the Connection to Jira Service Management

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Jira Service Management JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.jiraservicedesk.jar

Fill in the connection properties and copy the connection string to the clipboard.

You can establish a connection to any Jira Service Desk Cloud account or Server instance.

Connecting with a Cloud Account

To connect to a Cloud account, you'll first need to retrieve an APIToken. To generate one, log in to your Atlassian account and navigate to API tokens > Create API token. The generated token will be displayed.

Supply the following to connect to data:

  • User: Set this to the username of the authenticating user.
  • APIToken: Set this to the API token found previously.

Connecting with a Service Account

To authenticate with a service account, you will need to supply the following connection properties:

  • User: Set this to the username of the authenticating user.
  • Password: Set this to the password of the authenticating user.
  • URL: Set this to the URL associated with your JIRA Service Desk endpoint. For example, https://yoursitename.atlassian.net.

Note: Password has been deprecated for connecting to a Cloud Account and is now used only to connect to a Server Instance.

Accessing Custom Fields

By default, the connector only surfaces system fields. To access the custom fields for Issues, set IncludeCustomFields.

To host the JDBC driver in clustered environments or in the cloud, you will need a license (full or trial) and a Runtime Key (RTK). For more information on obtaining this license (or a trial), contact our sales team.

The following are essential properties needed for our JDBC connection.

PropertyValue
Database Connection URLjdbc:jiraservicedesk:RTK=5246...;ApiKey=myApiKey;User=MyUser;InitiateOAuth=GETANDREFRESH
Database Driver Class Namecdata.jdbc.jiraservicedesk.JiraServiceDeskDriver

Establishing a JDBC Connection within Airflow

  1. Log into your Apache Airflow instance.
  2. On the navbar of your Airflow instance, hover over Admin and then click Connections.
  3. Next, click the + sign on the following screen to create a new connection.
  4. In the Add Connection form, fill out the required connection properties:
    • Connection Id: Name the connection, i.e.: jiraservicedesk_jdbc
    • Connection Type: JDBC Connection
    • Connection URL: The JDBC connection URL from above, i.e.: jdbc:jiraservicedesk:RTK=5246...;ApiKey=myApiKey;User=MyUser;InitiateOAuth=GETANDREFRESH)
    • Driver Class: cdata.jdbc.jiraservicedesk.JiraServiceDeskDriver
    • Driver Path: PATH/TO/cdata.jdbc.jiraservicedesk.jar
  5. Test your new connection by clicking the Test button at the bottom of the form.
  6. After saving the new connection, on a new screen, you should see a green banner saying that a new row was added to the list of connections:

Creating a DAG

A DAG in Airflow is an entity that stores the processes for a workflow and can be triggered to run this workflow. Our workflow is to simply run a SQL query against Jira Service Management data and store the results in a CSV file.

  1. To get started, in the Home directory, there should be an "airflow" folder. Within there, we can create a new directory and title it "dags". In here, we store Python files that convert into Airflow DAGs shown on the UI.
  2. Next, create a new Python file and title it jira service management_hook.py. Insert the following code inside of this new file:
    	import time
    	from datetime import datetime
    	from airflow.decorators import dag, task
    	from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    	import pandas as pd
    
    	# Declare Dag
    	@dag(dag_id="jira service management_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    	
    	# Define Dag Function
    	def extract_and_load():
    	# Define tasks
    		@task()
    		def jdbc_extract():
    			try:
    				hook = JdbcHook(jdbc_conn_id="jdbc")
    				sql = """ select * from Account """
    				df = hook.get_pandas_df(sql)
    				df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    				# print(df.head())
    				print(df)
    				tbl_dict = df.to_dict('dict')
    				return tbl_dict
    			except Exception as e:
    				print("Data extract error: " + str(e))
                
    		jdbc_extract()
        
    	sf_extract_and_load = extract_and_load()
    
  3. Save this file and refresh your Airflow instance. Within the list of DAGs, you should see a new DAG titled "jira service management_hook".
  4. Click on this DAG and, on the new screen, click on the unpause switch to make it turn blue, and then click the trigger (i.e. play) button to run the DAG. This executes the SQL query in our jira service management_hook.py file and export the results as a CSV to whichever file path we designated in our code.
  5. After triggering our new DAG, we check the Downloads folder (or wherever you chose within your Python script), and see that the CSV file has been created - in this case, account.csv.
  6. Open the CSV file to see that your Jira Service Management data is now available for use in CSV format thanks to Apache Airflow.

More Information & Free Trial

Download a free, 30-day trial of the CData JDBC Driver for Jira Service Management and start working with your live Jira Service Management data in Apache Airflow. Reach out to our Support Team if you have any questions.