Discover how a bimodal integration strategy can address the major data management challenges facing your organization today.
Get the Report →How to Visualize Salesloft Data in Python with pandas
Use pandas and other modules to analyze and visualize live Salesloft data in Python.
The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for Salesloft, the pandas & Matplotlib modules, and the SQLAlchemy toolkit, you can build Salesloft-connected Python applications and scripts for visualizing Salesloft data. This article shows how to use the pandas, SQLAlchemy, and Matplotlib built-in functions to connect to Salesloft data, execute queries, and visualize the results.
With built-in optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Salesloft data in Python. When you issue complex SQL queries from Salesloft, the driver pushes supported SQL operations, like filters and aggregations, directly to Salesloft and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).
Connecting to Salesloft Data
Connecting to Salesloft data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.
SalesLoft authenticates using the OAuth authentication standard or an API Key. OAuth requires the authenticating user to interact with SalesLoft using the browser.Using OAuth
For OAuth authentication, create an OAuth app to obtain the OAuthClientId, OAuthClientSecret, and CallbackURL connection properties. See the OAuth section in the Help documentation for an authentication guide.Using APIKey
Alternatively, you can authenticate with an APIKey. Provision an API key from the SalesLoft user interface: https://accounts.salesloft.com/oauth/applications/. You will receive a Key which will be used when issuing requests.
Follow the procedure below to install the required modules and start accessing Salesloft through Python objects.
Install Required Modules
Use the pip utility to install the pandas & Matplotlib modules and the SQLAlchemy toolkit:
pip install pandas pip install matplotlib pip install sqlalchemy
Be sure to import the module with the following:
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Visualize Salesloft Data in Python
You can now connect with a connection string. Use the create_engine function to create an Engine for working with Salesloft data.
engine = create_engine("salesloft:///?AuthScheme=OAuth&OAuthClientId=MyOAuthClientId&OAuthClientSecret=MyOAuthClientSecret&CallbackUrl=http://localhost:33333&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
Execute SQL to Salesloft
Use the read_sql function from pandas to execute any SQL statement and store the resultset in a DataFrame.
df = pandas.read_sql("SELECT Id, Name FROM Accounts WHERE Country = 'Canada'", engine)
Visualize Salesloft Data
With the query results stored in a DataFrame, use the plot function to build a chart to display the Salesloft data. The show method displays the chart in a new window.
df.plot(kind="bar", x="Id", y="Name") plt.show()
Free Trial & More Information
Download a free, 30-day trial of the CData Python Connector for Salesloft to start building Python apps and scripts with connectivity to Salesloft data. Reach out to our Support Team if you have any questions.
Full Source Code
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("salesloft:///?AuthScheme=OAuth&OAuthClientId=MyOAuthClientId&OAuthClientSecret=MyOAuthClientSecret&CallbackUrl=http://localhost:33333&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") df = pandas.read_sql("SELECT Id, Name FROM Accounts WHERE Country = 'Canada'", engine) df.plot(kind="bar", x="Id", y="Name") plt.show()