Ready to get started?

Download a free trial of the Streak Connector to get started:

 Download Now

Learn more:

Streak Icon Streak Python Connector

Python Connector Libraries for Streak Data Connectivity. Integrate Streak with popular Python tools like Pandas, SQLAlchemy, Dash & petl.

How to use SQLAlchemy ORM to access Streak Data in Python

Create Python applications and scripts that use SQLAlchemy Object-Relational Mappings of Streak data.

The rich ecosystem of Python modules lets you get to work quickly and integrate your systems effectively. With the CData Python Connector for Streak and the SQLAlchemy toolkit, you can build Streak-connected Python applications and scripts. This article shows how to use SQLAlchemy to connect to Streak data to query Streak data.

With built-in optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Streak data in Python. When you issue complex SQL queries from Streak, the CData Connector pushes supported SQL operations, like filters and aggregations, directly to Streak and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Connecting to Streak Data

Connecting to Streak data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.

Use the following steps to generate a new API key for authenticating to Streak.

  1. Navigate to Gmail
  2. Click on the Streak dropdown to the right of the search bar
  3. Select the Integrations button. This will open a window where you can view existing integrations and create new API keys.
  4. Under the Streak API section of integrations, click the button to Create New Key.

Follow the procedure below to install SQLAlchemy and start accessing Streak through Python objects.

Install Required Modules

Use the pip utility to install the SQLAlchemy toolkit and SQLAlchemy ORM package:

pip install sqlalchemy pip install sqlalchemy.orm

Be sure to import the appropriate modules:

from sqlalchemy import create_engine, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker

Model Streak Data in Python

You can now connect with a connection string. Use the create_engine function to create an Engine for working with Streak data.

NOTE: Users should URL encode the any connection string properties that include special characters. For more information, refer to the SQL Alchemy documentation.

engine = create_engine("streak:///?ApiKey=8c84j9b4j54762ce809ej6a782d776j3")

Declare a Mapping Class for Streak Data

After establishing the connection, declare a mapping class for the table you wish to model in the ORM (in this article, we will model the Users table). Use the sqlalchemy.ext.declarative.declarative_base function and create a new class with some or all of the fields (columns) defined.

base = declarative_base() class Users(base): __tablename__ = "Users" UserKey = Column(String,primary_key=True) Email = Column(String) ...

Query Streak Data

With the mapping class prepared, you can use a session object to query the data source. After binding the Engine to the session, provide the mapping class to the session query method.

Using the query Method

engine = create_engine("streak:///?ApiKey=8c84j9b4j54762ce809ej6a782d776j3") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Users).filter_by(Email="[email protected]"): print("UserKey: ", instance.UserKey) print("Email: ", instance.Email) print("---------")

Alternatively, you can use the execute method with the appropriate table object. The code below works with an active session.

Using the execute Method

Users_table = Users.metadata.tables["Users"] for instance in session.execute( == "[email protected]")): print("UserKey: ", instance.UserKey) print("Email: ", instance.Email) print("---------")

For examples of more complex querying, including JOINs, aggregations, limits, and more, refer to the Help documentation for the extension.

Free Trial & More Information

Download a free, 30-day trial of the CData Python Connector for Streak to start building Python apps and scripts with connectivity to Streak data. Reach out to our Support Team if you have any questions.