製品をチェック

無償トライアル:

無償トライアルへ

製品の情報と無償トライアルへ:

Airtable Python Connector

Airtable へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにAirtable をシームレスに統合。

データ連携でお困りですか?

お問い合わせ

Python pandas を使ってAirtable データをビジュアライズ


CData Python Connector for Airtable を使えば、Python でAirtable をpandas などのライブラリで呼び出し、データ分析やビジュアライズが可能になります。


古川えりか
コンテンツスペシャリスト

airtable ロゴ画像

Python

python ロゴ画像
pandas ロゴ画像

こんにちは!コンテンツスペシャリストの古川です。Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for Airtable は、pandas、Matplotlib、SQLAlchemy から使用することで Airtable にデータ連携するPython アプリケーションを構築したり、Airtable データの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でAirtable にリアルタイムアクセスし、クエリを実行して結果をビジュアライズする方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムAirtable データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Airtable に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Airtable 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Airtable データへの接続

まずは、右側のサイドバーからCData Pytthon Connector の無償トライアルをダウンロード・インストールしてください。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Airtable への接続には、APIKey、BaseId、TableNames のプロパティが必須です。ViewNames は任意項目でテーブルのビューを指定することができます。

  • APIKey : アカウントのAPI Key。取得には、アカウントにログインして、API セクションで「Generate API Key」をクリックします。
  • BaseId : ベースのId。取得には、APIKey と同じ場所で、「Airtable API」をクリックするか、https://airtable.com/api に進み、ベースを選択します。"The ID of this base is appxxN2ftedc0nEG7." というメッセージがIntroduction セッションで表示されます。
  • TableNames : 選択されたベースのテーブル名のカンマ区切りのリスト。UI で見られるテーブル名と同じです。
  • ViewNames : table.view 形式のビューのカンマ区切りのリスト。UI でみられるビュー名と同じです。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でAirtable にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でAirtable データをビジュアライズ

次は接続文字列を作成してAirtable に接続します。create_engine 関数を使って、Airtable に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("airtable:///?APIKey=keymz3adb53RqsU&BaseId=appxxN2fe34r3rjdG7&TableNames=TableA,...&ViewNames=TableA.ViewA,...")

Airtable にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Id, Column1 FROM SampleTable_1 WHERE Column1 = 'Value1'""", engine)

Airtable データをビジュアライズ

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Airtable データをグラフ化してみます。

df.plot(kind="bar", x="Id", y="Column1")
plt.show()
Airtable data in a Python plot (Salesforce is shown).

製品の無償トライアル情報

Airtable Python Connector の30日の無償トライアル をぜひダウンロードして、Airtable への接続をPython アプリやスクリプトから簡単に作成しましょう。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("airtable:///?APIKey=keymz3adb53RqsU&BaseId=appxxN2fe34r3rjdG7&TableNames=TableA,...&ViewNames=TableA.ViewA,...")
df = pandas.read_sql("""SELECT Id, Column1 FROM SampleTable_1 WHERE Column1 = 'Value1'""", engine)

df.plot(kind="bar", x="Id", y="Column1")
plt.show()