製品をチェック

無償トライアル:

ダウンロードへ

製品の詳細情報へ:

Asana Python Connector

Asana へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにAsana をシームレスに統合。

データ連携でお困りですか?

お問い合わせ

Python pandas を使ってAsana データをビジュアライズ


CData Python Connector for Asana を使えば、Python でAsana をpandas やその他の標準モジュールでで呼び出し、データ分析やビジュアライズが可能になります。


Python

Python エコシステムには多くのモジュールがあり、システム構築を素早く効率的に行うのに役立ちます。CData Python Connector for Asana は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Asana にデータ連携するPython アプリケーションを構築し、Asana をビジュアライズできます。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でAsana にリアルタイムアクセスし、クエリを実行し、結果をビジュアライズする方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムAsana データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Asana に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Asana 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Asana データへの接続

Asana への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Asana への接続は以下のように行います。

  • WorkspaceId: Asana Wrokspace のglobally unique identifier (gid) を設定すると指定されたWorkspace のプロジェクトだけを返します。Workspace Id はhttps://app.asana.com/api/1.0/workspaces から取得します。表示されるJSON にWorkspace name およびId が含まれます。
  • ProjectId: Asana Project のglobally unique identifier (gid) に設定すると指定されたProject のデータだけを返します。Project ID はプロジェクトのOverview ページのURL を参照してください。/0/ の後ろの数字 です。

OAuth 認証

Asana への認証にはOAuth 認証が使われます。OAuth はAsana のブラウザで認証ユーザーを認証する処理が必要です。OAuth の詳細については、ヘルプドキュメントの「はじめに」を参照してください。

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でAsana にアクセスします。

必要なモジュールのインストール

pip で、pandas & Matplotlib モジュールおよび、SQLAlchemy ツールキットをインストールします:

pip install pandas
pip install matplotlib
pip install sqlalchemy

以下のようにモジュールをインポートします:

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でAsana データをビジュアライズ

次は、接続文字列で接続を確立します。create_engine 関数を使って、Asana に連携するEngne を作成します。.

engine = create_engine("asana:///?OAuthClientId=YourClientId&OAuthClientSecret=YourClientSecret&CallbackURL='http://localhost:33333'&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

Asana にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Id, WorkspaceId FROM projects WHERE Archived = 'true'""", engine)

Asana データをビジュアライズ

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Asana data をグラフで表現してみます。show メソッドはグラフを新しいウィンドウに表示します。

df.plot(kind="bar", x="Id", y="WorkspaceId")
plt.show()

製品の無償トライアル情報

Asana Python Connector の30日の無償トライアル をぜひダウンロードして、Asana への接続をPython アプリやスクリプトから簡単に作成しましょう。



ソースコードe

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("asana:///?OAuthClientId=YourClientId&OAuthClientSecret=YourClientSecret&CallbackURL='http://localhost:33333'&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT Id, WorkspaceId FROM projects WHERE Archived = 'true'""", engine)

df.plot(kind="bar", x="Id", y="WorkspaceId")
plt.show()