製品をチェック

Avro Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

Avro アイコン Avro Python Connector 相談したい

Avro データ接続用のPython コネクタライブラリ。Pandas、SQLAlchemy、Dash & petl など人気のPython ツールとAvro を連携。

Python のDash ライブラリを使って、Avro データ に連携するウェブアプリケーションを開発する方法

CData Python Connector を使って、Avro にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
avro ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for Avro を使うことで、pandas モジュールとDash フレームワークでAvro にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、Avro に連携して、Avro データ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Avro をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Dash をはじめとする多様なデータ分析・BI ツールにAvro データを連携
  3. ノーコードでの手軽な接続設定

必要なモジュールのインストール

まずは、pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でAvro データを可視化

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.avro as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData Avro Connector からAvro データ との接続を確立します。

cnxn = mod.connect("URI=C:/folder/table.avroInitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")

URI 接続プロパティをAvro ファイルの場所に設定して、ローカルのAvro ファイルに接続します。

Avro にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = 'value_2'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-avroedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、Avro データ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='Avro SampleTable_1 Data', barmode='stack')
		})
], className="container")

アプリをセットアップして実行

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。

if __name__ == '__main__':
    app.run_server(debug=True)

最後に、Python でウェブアプリを起動してブラウザでAvro データ を見てみましょう。

python avro-dash.py
Dash のウェブアプリでAvro データ を表示

ちゃんとデータが表示できてますね!

おわりに

Avro Python Connector の30日の無償トライアル をぜひダウンロードして、Avro データ への接続をPython アプリやスクリプトから簡単に作成してみてください。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.avro as mod
import plotly.graph_objs as go

cnxn = mod.connect("URI=C:/folder/table.avroInitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

df = pd.read_sql("SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = 'value_2'", cnxn)
app_name = 'dash-avrodataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='Avro SampleTable_1 Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。