今すぐお試しください!

製品の詳細CData Python Connector for BigCommerce を確認して、無償評価版をダウンロード:

今すぐダウンロード

Python pandas を使ってBigCommerce データをビジュアライズ

CData Python Connector for BigCommerce を使えば、Python でBigCommerce をpandas やその他の標準モジュールでで呼び出し、データ分析やビジュアライズが可能になります。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for BigCommerce は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで BigCommerce にデータ連携するPython アプリケーションを構築し、BigCommerce をビジュアライズできます。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でBigCommerce にリアルタイムアクセスし、クエリを実行し、結果をビジュアライズする方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムBigCommerce データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。BigCommerce に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接BigCommerce 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

BigCommerce データへの接続

BigCommerce への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

BigCommerce authentication is based on the standard OAuth flow. To authenticate, you must initially create an app via the Big Commerce developer platform where you can obtain an OAuthClientId, OAuthClientSecret, and CallbackURL. These three parameters will be set as connection properties to your driver.

Additionally, in order to connect to your BigCommerce Store, you will need your StoreId. To find your Store Id please follow these steps:

  1. Log in to your BigCommerce account.
  2. From the Home Page, select Advanced Settings > API Accounts.
  3. Click Create API Account.
  4. A text box named API Path will appear on your screen.
  5. Inside you can see a URL of the following structure: https://api.bigcommerce.com/stores/{Store Id}/v3.
  6. As demonstrated above, your Store Id will be between the 'stores/' and '/v3' path paramters.
  7. Once you have retrieved your Store Id you can either click Cancel or proceed in creating an API Account in case you do not have one already.

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でBigCommerce にアクセスします。

必要なモジュールのインストール

pip で、pandas & Matplotlib モジュールおよび、SQLAlchemy ツールキットをインストールします:

pip install pandas
pip install matplotlib
pip install sqlalchemy

以下のようにモジュールをインポートします:

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でBigCommerce データをビジュアライズ

次は、接続文字列で接続を確立します。create_engine 関数を使って、BigCommerce に連携するEngne を作成します。.

engine = create_engine("bigcommerce:///?OAuthClientId=YourClientId& OAuthClientSecret=YourClientSecret& StoreId='YourStoreID'& CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

BigCommerce にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'""", engine)

BigCommerce データをビジュアライズ

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、BigCommerce data をグラフで表現してみます。show メソッドはグラフを新しいウィンドウに表示します。

df.plot(kind="bar", x="FirstName", y="LastName")
plt.show()

製品の無償トライアル情報

BigCommerce Python Connector の30日の無償トライアル をぜひダウンロードして、BigCommerce への接続をPython アプリやスクリプトから簡単に作成しましょう。



ソースコードe

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("bigcommerce:///?OAuthClientId=YourClientId& OAuthClientSecret=YourClientSecret& StoreId='YourStoreID'& CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT FirstName, LastName FROM Customers WHERE FirstName = 'Bob'""", engine)

df.plot(kind="bar", x="FirstName", y="LastName")
plt.show()
 
 
ダウンロード