SQLAlchemy ORM を使って、Python でBigCommerce データに連携

詳細情報をご希望ですか?

無償トライアル:

ダウンロードへ

製品の詳細情報へ:

BigCommerce Python Connector

BigCommerce へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにBigCommerce をシームレスに統合。



CData Python Connector for BigCommerce を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でBigCommerce にOR マッピング可能に。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for BigCommerce は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで BigCommerce にデータ連携するPython アプリケーションを構築し、BigCommerce data をビジュアライズできます。 本記事では、SQLAlchemy でBigCommerce に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムBigCommerce data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。BigCommerce に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接BigCommerce 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

BigCommerce Data への接続

BigCommerce data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

BigCommerce 認証は標準のOAuth フローに基づいています。

Store ID の取得

BigCommerce Store に接続するには、StoreId が必要です。Store Id を確認するには、以下の手順に従ってください。

  1. BigCommerce アカウントにログインします。
  2. ホームページから「Advanced Settings」->「API Accounts」 を選択します。
  3. 「Create API Account」->「Create V2/V3 API Token」をクリックします。
  4. 画面にAPI Path という名前のテキストボックスが表示されます。
  5. テキストボックス内に、次の構造のURL が表示されます:https://api.bigcommerce.com/stores/{Store Id}/v3。
  6. 上記で示したように、Store Id は'stores/' と'/v3' パスパラメータの間にあります。
  7. Store Id を取得したら、「キャンセル」 をクリックするか、まだ持っていない場合はAPI Account の作成に進むことができます。

個人用アクセストークンの取得

加えて、自分のデータをテストおよびアクセスするには、個人用トークンを取得する必要があります。個人用トークンを取得する方法は次のとおりです。

  1. BigCommerce アカウントにログインします。
  2. ホームページから「Advanced Settings」->「API Accounts」 を選択します。
  3. 「Create API Account」->「Create V2/V3 API Token」をクリックします。
  4. アカウント名を入力します。
  5. 作成するAPI Account の「OAuth Scopes」を選択します。本製品 は"None" とマークされたデータにアクセスできません。また、"read-only" とマークされたデータを変更できません。
  6. 「保存」をクリックします。

BigCommerce への認証

次に、以下を設定してデータに接続できます。
  • StoreId:API Path テキストボックスから取得したStore ID に設定。
  • OAuthAccessToken:生成したトークンに設定。
  • InitiateOAuth:OFF に設定。

以下の手順でSQLAlchemy をインストールして、Python オブジェクトからBigCommerce に接続します。

必要なモジュールのインストールs

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でBigCommerce Data をモデル化します

次は、接続文字列で接続を確立します。create_engine 関数を使って、BigCommerce data に連携するEngne を作成します。

engine = create_engine("bigcommerce///?OAuthClientId=YourClientId& OAuthClientSecret=YourClientSecret& StoreId='YourStoreID'& CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

BigCommerce Data のマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Customers テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Customers(base):
	__tablename__ = "Customers"
	FirstName = Column(String,primary_key=True)
	LastName = Column(String)
	...

BigCommerce Data をクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("bigcommerce///?OAuthClientId=YourClientId& OAuthClientSecret=YourClientSecret& StoreId='YourStoreID'& CallbackURL='http://localhost:33333'InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Customers).filter_by(FirstName="Bob"):
	print("FirstName: ", instance.FirstName)
	print("LastName: ", instance.LastName)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Customers_table = Customers.metadata.tables["Customers"]
for instance in session.execute(Customers_table.select().where(Customers_table.c.FirstName == "Bob")):
	print("FirstName: ", instance.FirstName)
	print("LastName: ", instance.LastName)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

BigCommerce Data の挿入(INSERT)

BigCommerce data への挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、BigCommerce にすべての追加インスタンスを送ります。

new_rec = Customers(FirstName="placeholder", FirstName="Bob")
session.add(new_rec)
session.commit()

BigCommerce Data を更新(UPDATE)

BigCommerce data の更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、BigCommerce にレコードを追加します。

updated_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.FirstName = "Bob"
session.commit()

BigCommerce Data を削除(DELETE)

BigCommerce data の削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

製品の無償トライアル情報

BigCommerce Python Connector の30日の無償トライアル をぜひダウンロードして、BigCommerce data への接続をPython アプリやスクリプトから簡単に作成しましょう。