今すぐお試しください!

製品の詳細CData Python Connector for Google BigQuery を確認して、無償評価版をダウンロード:

今すぐダウンロード

SQLAlchemy ORM を使って、Python でBigQuery データに連携

CData Python Connector for BigQuery を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でBigQuery にOR マッピング可能に。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for BigQuery は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで BigQuery にデータ連携するPython アプリケーションを構築し、BigQuery data をビジュアライズできます。 本記事では、SQLAlchemy でBigQuery に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムBigQuery data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。BigQuery に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接BigQuery 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

BigQuery Data への接続

BigQuery data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Google はOAuth 認証標準を使用します。個々のユーザーとしてGoogle API にアクセスするには、組み込みクレデンシャルを使うか、OAuth アプリを作成します。

OAuth では、Google Apps ドメインのユーザーとしてサービスアカウントを使ってアクセスすることもできます。サービスカウントでの認証では、OAuth JWT を取得するためのアプリケーションを登録する必要があります。

OAuth 値に加え、DatasetId、ProjectId を設定する必要があります。詳細はヘルプドキュメントの「はじめに」を参照してください。

以下の手順でSQLAlchemy をインストールして、Python オブジェクトからBigQuery に接続します。

必要なモジュールのインストールs

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でBigQuery Data をモデル化します

次は、接続文字列で接続を確立します。create_engine 関数を使って、BigQuery data に連携するEngne を作成します。

engine = create_engine("googlebigquery///?DataSetId=MyDataSetId&ProjectId=MyProjectId&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

BigQuery Data のマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Orders(base):
	__tablename__ = "Orders"
	OrderName = Column(String,primary_key=True)
	Freight = Column(String)
	...

BigQuery Data をクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("googlebigquery///?DataSetId=MyDataSetId&ProjectId=MyProjectId&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Orders).filter_by(ShipCity="New York"):
	print("OrderName: ", instance.OrderName)
	print("Freight: ", instance.Freight)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Orders_table = Orders.metadata.tables["Orders"]
for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCity == "New York")):
	print("OrderName: ", instance.OrderName)
	print("Freight: ", instance.Freight)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

BigQuery Data の挿入(INSERT)

BigQuery data への挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、BigQuery にすべての追加インスタンスを送ります。

new_rec = Orders(OrderName="placeholder", ShipCity="New York")
session.add(new_rec)
session.commit()

BigQuery Data を更新(UPDATE)

BigQuery data の更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、BigQuery にレコードを追加します。

updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.ShipCity = "New York"
session.commit()

BigQuery Data を削除(DELETE)

BigQuery data の削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

製品の無償トライアル情報

BigQuery Python Connector の30日の無償トライアル をぜひダウンロードして、BigQuery data への接続をPython アプリやスクリプトから簡単に作成しましょう。

 
 
ダウンロード