各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for CSV を使うことで、pandas モジュールとDash フレームワークでCSV にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、CSV に連携して、CSV のデータ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。
CData Python Connectors は、以下のような特徴を持った製品です。
まずは、pip で必要なモジュールおよびフレームワークをインストールします:
pip install pandas pip install dash pip install dash-daq
必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。
まず、CData Connector を含むモジュールをインポートします:
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.csv as mod import plotly.graph_objs as go
接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData CSV Connector からCSV のデータ との接続を確立します。
cnxn = mod.connect("DataSource=MyCSVFilesFolder;")
DataSource プロパティにローカルフォルダ名を設定します。
.csv、.tab、.txt ではない拡張子のファイルを扱う場合には、IncludeFiles 使用する拡張子をカンマ区切りで設定します。Microsoft Jet OLE DB 4.0 driver 準拠の場合にはExtended Properties を設定することができます。別の方法として、Schema.ini ファイルにファイル形式を記述することも可能です。
CSV ファイルの削除や更新を行う場合には、UseRowNumbers をTRUE に設定します。RowNumber はテーブルKey として扱われます。
URI をバケットおよびフォルダに設定します。さらに、次のプロパティを設定して認証します。
URI をCSV ファイルを含むフォルダへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。
URI をCSV ファイルを含むフォルダへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。
URI をCSV ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。
URI をCSV ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。
URI をルートフォルダとして使用されるフォルダへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。
デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。
read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。
df = pd.read_sql("""SELECT City, TotalDue FROM Customer WHERE FirstName = 'Bob'""", cnxn)
DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。
app_name = 'dash-csvedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash'
次に、CSV のデータ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。
trace = go.Bar(x=df.City, y=df.TotalDue, name='City') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='CSV Customer Data', barmode='stack') }) ], className="container")
接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。
if __name__ == '__main__': app.run_server(debug=True)
最後に、Python でウェブアプリを起動してブラウザでCSV のデータ を見てみましょう。
python csv-dash.py
ちゃんとデータが表示できてますね!
CSV Python Connector の30日の無償トライアル をぜひダウンロードして、CSV のデータ への接続をPython アプリやスクリプトから簡単に作成してみてください。
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.csv as mod import plotly.graph_objs as go cnxn = mod.connect("DataSource=MyCSVFilesFolder;") df = pd.read_sql("SELECT City, TotalDue FROM Customer WHERE FirstName = 'Bob'", cnxn) app_name = 'dash-csvdataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash' trace = go.Bar(x=df.City, y=df.TotalDue, name='City') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='CSV Customer Data', barmode='stack') }) ], className="container") if __name__ == '__main__': app.run_server(debug=True)