各製品の資料を入手。
詳細はこちら →Python pandas を使ってGreenhouse のデータを可視化・分析する方法
CData Python Connector を使えば、Python でGreenhouse をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。
最終更新日:2023-09-23
この記事で実現できるGreenhouse 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for Greenhouse は、pandas、Matplotlib、SQLAlchemy から使用することで Greenhouse にデータ連携するPython アプリケーションを構築したり、Greenhouse のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でGreenhouse にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- Greenhouse をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- pandas をはじめとする多様なデータ分析・BI ツールにGreenhouse のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてGreenhouse の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でGreenhouse にアクセスします。
必要なライブラリのインストール
pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
次にライブラリをインポートします。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python でGreenhouse のデータを可視化
次は接続文字列を作成してGreenhouse に接続します。create_engine 関数を使って、Greenhouse に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。
engine = create_engine("greenhouse:///?APIKey=YourAPIKey")
Greenhouse への接続にはAPI キーが必要です。API キーを作成するには、以下の手順に従います。
- ナビゲーションバーのConfigure アイコンをクリックし、左側にあるDev Center を見つけます。
- API Credential Management を選択します。
- Create New API Key をクリックします。
- "API Type" をHarvest に設定します。
- "Partner" をcustom に設定します。
- オプションで、説明を入力します。
- Manage permissions に進み、本製品を利用してアクセスしたいリソースに基づいて適切な権限を選択します。
- 作成されたキーをコピーし、APIKey にその値を設定します。
Greenhouse にアクセスするSQL を実行
pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。
df = pandas.read_sql("""SELECT Id, CandidateId FROM Applications WHERE Status = 'Active'""", engine)
Greenhouse のデータを可視化
DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Greenhouse のデータをグラフ化してみます。
df.plot(kind="bar", x="Id", y="CandidateId") plt.show()

Greenhouse からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。
ソースコード
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("greenhouse:///?APIKey=YourAPIKey") df = pandas.read_sql("""SELECT Id, CandidateId FROM Applications WHERE Status = 'Active'""", engine) df.plot(kind="bar", x="Id", y="CandidateId") plt.show()