製品をチェック

JSON Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

JSON アイコン JSON Python Connector 相談したい

JSON へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにJSON をシームレスに統合。

Python pandas を使ってJSON のデータを可視化・分析する方法

CData Python Connector を使えば、Python でJSON をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
json ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for JSON は、pandas、Matplotlib、SQLAlchemy から使用することで JSON にデータ連携するPython アプリケーションを構築したり、JSON のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でJSON にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. JSON をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにJSON のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてJSON の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でJSON にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でJSON のデータを可視化

次は接続文字列を作成してJSON に接続します。create_engine 関数を使って、JSON に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("json:///?URI=C:/people.json&DataModel=Relational")

データソースへの認証については、ヘルプドキュメントの「はじめに」を参照してください。CData 製品は、JSON API を双方向データベーステーブルとして、JSON ファイルを読み取り専用ビュー(ローカル ファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)としてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。詳細はヘルプドキュメントの「はじめに」を参照してください。

URI を設定して認証値を入力したら、DataModel を設定してデータ表現とデータ構造をより厳密に一致させます。

DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、次の基本設定を切り替えます。

  • Document(デフォルト):JSON データのトップレベルのドキュメントビューをモデル化します。CData 製品 は、ネストされたオブジェクト配列を集約されたJSON オブジェクトとして返します。
  • FlattenedDocuments:ネストされた配列オブジェクトと親オブジェクトを、単一テーブルに暗黙的に結合します。
  • Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれています。

リレーショナル表現の設定についての詳細は、ヘルプドキュメントの「JSON データのモデリング」を参照してください。また、以下の例で使用されているサンプルデータも確認できます。データには人や所有する車、それらの車に行われたさまざまなメンテナンスサービスのエントリが含まれています。

Amazon S3 内のJSON への接続

URI をバケット内のJSON ドキュメントに設定します。さらに、次のプロパティを設定して認証します。

  • AWSAccessKey:AWS アクセスキー(username)に設定。
  • AWSSecretKey:AWS シークレットキーに設定。

Box 内のJSON への接続

URI をJSON ファイルへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。

Dropbox 内のJSON への接続

URI をJSON ファイルへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。 URI=dropbox://folder1/file.json; InitiateOAuth=GETANDREFRESH; OAuthClientId=oauthclientid1; OAuthClientSecret=oauthcliensecret1; CallbackUrl=http://localhost:12345;

SharePoint Online SOAP 内のJSON への接続

URI をJSON ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。

SharePoint Online REST 内のJSON への接続

URI をJSON ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。

FTP 内のJSON への接続

URI をJSON ファイルへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。

Google Drive 内のJSON への接続

デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。

JSON にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'""", engine)

JSON のデータを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、JSON のデータをグラフ化してみます。

df.plot(kind="bar", x="[ personal.name.first ]", y="[ personal.name.last ]")
plt.show()
JSON services in a Python plot (Salesforce is shown).

JSON からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("json:///?URI=C:/people.json&DataModel=Relational")
df = pandas.read_sql("""SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'""", engine)

df.plot(kind="bar", x="[ personal.name.first ]", y="[ personal.name.last ]")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。