各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには多くのモジュールがあり、システム構築を素早く効率的に行うことができます。本記事では、CData Python Connector for JSON とpetl フレームワークを使って、JSON のデータにPython から接続してデータを変換、CSV に出力するETL 変換を実装してみます。
CData Python Connector は効率的なデータ処理によりJSON のデータ にPython から接続し、高いパフォーマンスを発揮します。JSON にデータをクエリする際、ドライバーはフィルタリング、集計などがサポートされている場合SQL 処理を直接JSON 側に行わせ、サポートされていないSQL 処理については、組み込みのSQL エンジンによりクライアント側で処理を行います(JOIN やSQL 関数など)。
pip で必要なモジュールおよびフレームワークをインストールします:
pip install petl pip install pandas
モジュールとフレームワークをインストールしたら、ETL アプリケーションを組んでいきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。
CData Connector を含むモジュールをインポートします。
import petl as etl import pandas as pd import cdata.json as mod
接続文字列で接続を確立します。connect 関数を使って、CData JSON Connector からJSON への接続を行います
cnxn = mod.connect("URI=C:/people.json;DataModel=Relational;")
データソースへの認証については、ヘルプドキュメントの「はじめに」を参照してください。CData 製品は、JSON API を双方向データベーステーブルとして、JSON ファイルを読み取り専用ビュー(ローカル ファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)としてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。詳細はヘルプドキュメントの「はじめに」を参照してください。
URI を設定して認証値を入力したら、DataModel を設定してデータ表現とデータ構造をより厳密に一致させます。
DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、次の基本設定を切り替えます。
リレーショナル表現の設定についての詳細は、ヘルプドキュメントの「JSON データのモデリング」を参照してください。また、以下の例で使用されているサンプルデータも確認できます。データには人や所有する車、それらの車に行われたさまざまなメンテナンスサービスのエントリが含まれています。
URI をバケット内のJSON ドキュメントに設定します。さらに、次のプロパティを設定して認証します。
URI をJSON ファイルへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。
URI をJSON ファイルへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。 URI=dropbox://folder1/file.json; InitiateOAuth=GETANDREFRESH; OAuthClientId=oauthclientid1; OAuthClientSecret=oauthcliensecret1; CallbackUrl=http://localhost:12345;
URI をJSON ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。
URI をJSON ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。
URI をJSON ファイルへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。
デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。
JSON にはSQL でデータアクセスが可能です。people エンティティからのデータを読み出します。
sql = "SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'"
DataFrame に格納されたクエリ結果を使って、petl でETL(抽出・変換・ロード)パイプラインを組みます。この例では、JSON のデータ を取得して、[ personal.name.last ] カラムでデータをソートして、CSV ファイルにデータをロードします。
table1 = etl.fromdb(cnxn,sql) table2 = etl.sort(table1,'[ personal.name.last ]') etl.tocsv(table2,'people_data.csv')
CData Python Connector for JSON を使えば、データベースを扱う場合と同感覚で、JSON のデータ を扱うことができ、petl のようなETL パッケージから直接データにアクセスが可能になります。
JSON Python Connector の30日の無償トライアル をぜひダウンロードして、JSON のデータ への接続をPython アプリやスクリプトから簡単に作成しましょう。
import petl as etl import pandas as pd import cdata.json as mod cnxn = mod.connect("URI=C:/people.json;DataModel=Relational;") sql = "SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'" table1 = etl.fromdb(cnxn,sql) table2 = etl.sort(table1,'[ personal.name.last ]') etl.tocsv(table2,'people_data.csv')