今すぐお試しください!

製品の詳細CData Python Connector for Phoenix を確認して、無償評価版をダウンロード:

今すぐダウンロード

Dash を使って、Phoenix Data に連携するウェブアプリケーションを開発

CData Python Connector for Phoenix を使って、Phoenix にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for Phoenix を使うことで、pandas モジュールとDash フレームワークでPhoenix にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、Phoenix に連携して、Phoenix data をビジュアライズするシンプルなウエブアプリを作ります。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムPhoenix data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Phoenix に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Phoenix 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Phoenix Data への接続

Phoenix data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Connect to Apache Phoenix via the Phoenix Query Server. Set the Server and Port (if different from the default port) properties to connect to Apache Phoenix. The Server property will typically be the host name or IP address of the server hosting Apache Phoenix.

Authenticating to Apache Phoenix

By default, no authentication will be used (plain). If authentication is configured for your server, set AuthScheme to NEGOTIATE and set the User and Password properties (if necessary) to authenticate through Kerberos.

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でPhoenix にアクセスします。

必要なモジュールのインストール

pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でPhoenix Data をビジュアライズ

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.apachephoenix as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData Phoenix Connector にPhoenix data との接続を確立します。

cnxn = mod.connect("Server=localhost;Port=8765;")

Phoenix にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT Id, Column1 FROM MyTable WHERE Id = '123456'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-apachephoenixedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、Phoenix data をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='Phoenix MyTable Data', barmode='stack')
		})
], className="container")

アプリをセットアップして、実行n

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。Python コードの最後はこのようです。

if __name__ == '__main__':
    app.run_server(debug=True)

では、Python でウェブアプリを稼働させて、ブラウザでPhoenix data を見てみましょう。

python apachephoenix-dash.py

製品の無償トライアル情報

Phoenix Python Connector の30日の無償トライアル をぜひダウンロードして、Phoenix data への接続をPython アプリやスクリプトから簡単に作成しましょう。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.apachephoenix as mod
import plotly.graph_objs as go

cnxn = mod.connect("Server=localhost;Port=8765;")

df = pd.read_sql("SELECT Id, Column1 FROM MyTable WHERE Id = '123456'", cnxn)
app_name = 'dash-apachephoenixdataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='Phoenix MyTable Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)
 
 
ダウンロード