各製品の資料を入手。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for RaiserEdgeNXT は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Raisers Edge NXT にデータ連携するPython アプリケーションを構築し、Raisers Edge NXT データを可視化できます。 本記事では、SQLAlchemy でRaisers Edge NXT に連携して、データを取得、 する方法を説明します。
CData Python Connectors は、以下のような特徴を持った製品です。
CData Python Connectors では、1.データソースとしてRaisers Edge NXT の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、Raisers Edge NXT データに連携するEngne を作成します。
engine = create_engine("raiseredgenxt///?SubscriptionKey=MySubscriptionKey&OAuthClientId=MyOAuthClientId&OAuthClientSecret=MyOAuthClientSecret&CallbackURL=http://localhost:33333&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
接続設定の前に、BlackBaud Raiser's Edge NXT Profile にあるSubscriptionKey を取得しておいてください。
BlackBaud Raiser's Edge NXT は、OAuth 認証規格を使用します。すべてのフローにおいて、以下の設定が必要です。
この設定ののち、続けてOAuth 設定を行います。設定方法は、ヘルプドキュメント の「OAuth」セクションを参照してください。
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Constituents テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Constituents(base): __tablename__ = "Constituents" Id = Column(String,primary_key=True) AddressLines = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("raiseredgenxt///?SubscriptionKey=MySubscriptionKey&OAuthClientId=MyOAuthClientId&OAuthClientSecret=MyOAuthClientSecret&CallbackURL=http://localhost:33333&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Constituents).filter_by(Type="Home"): print("Id: ", instance.Id) print("AddressLines: ", instance.AddressLines) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
Constituents_table = Constituents.metadata.tables["Constituents"] for instance in session.execute(Constituents_table.select().where(Constituents_table.c.Type == "Home")): print("Id: ", instance.Id) print("AddressLines: ", instance.AddressLines) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。