ノーコードでクラウド上のデータとの連携を実現。
詳細はこちら →CData
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for RSS は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで RSS にデータ連携するPython アプリケーションを構築し、RSS データを可視化できます。 本記事では、SQLAlchemy でRSS に連携して、データを取得、 する方法を説明します。
CData Python Connectors は、以下のような特徴を持った製品です。
CData Python Connectors では、1.データソースとしてRSS の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、RSS データに連携するEngne を作成します。
engine = create_engine("rss///?URI=http://broadcastCorp/rss/")
RSS とAtom フィード、およびカスタム拡張機能を備えたフィードに接続できます。フィードに接続するには、URL プロパティを設定します。セキュアなフィードにアクセスすることもできます。さまざまな認証メカニズムがサポートされています。詳しくは、ヘルプドキュメントを参照してください。
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Latest News テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Latest News(base): __tablename__ = "Latest News" Author = Column(String,primary_key=True) Pubdate = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("rss///?URI=http://broadcastCorp/rss/") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Latest News).filter_by(Category="US"): print("Author: ", instance.Author) print("Pubdate: ", instance.Pubdate) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
Latest News_table = Latest News.metadata.tables["Latest News"] for instance in session.execute(Latest News_table.select().where(Latest News_table.c.Category == "US")): print("Author: ", instance.Author) print("Pubdate: ", instance.Pubdate) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。