各製品の資料を入手。
詳細はこちら →Python pandas を使ってSAP Ariba Source のデータを可視化・分析する方法
CData Python Connector を使えば、Python でSAP Ariba Source をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。
最終更新日:2023-09-23
この記事で実現できるSAP Ariba Source 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for SAPAribaSource は、pandas、Matplotlib、SQLAlchemy から使用することで SAP Ariba Source にデータ連携するPython アプリケーションを構築したり、SAP Ariba Source のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でSAP Ariba Source にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- SAP Ariba Source をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- pandas をはじめとする多様なデータ分析・BI ツールにSAP Ariba Source のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてSAP Ariba Source の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でSAP Ariba Source にアクセスします。
必要なライブラリのインストール
pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
次にライブラリをインポートします。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python でSAP Ariba Source のデータを可視化
次は接続文字列を作成してSAP Ariba Source に接続します。create_engine 関数を使って、SAP Ariba Source に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。
engine = create_engine("saparibasource:///?API=SupplierDataAPIWithPagination-V4&APIKey=wWVLn7WTAXrIRMAzZ6VnuEj7Ekot5jnU&Environment=SANDBOX&Realm=testRealm&AuthScheme=OAuthClient&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
SAP Ariba Source に接続するには、以下を設定します。
- API:本製品にSAP Ariba データを取得させたいAPI を指定。ビジネスロールに基づき、Supplier、Sourcing Project Management、またはContract API を選択します(可能な値は、SupplierDataAPIWithPaginationV4、SourcingProjectManagementAPIV2、または ContractAPIV1 です)。
- DataCenter:アカウントのデータがホストされているデータセンター。
- Realm:アクセスしたいサイト名。
- Environment:テスト環境、または本番環境のいずれかに指定。(可能な値は、TEST またはPRODUCTION)。
Supplier Data API またはContract API に接続する場合は、さらに以下を設定します。
- User:API 呼び出しを行うユーザーのId。
- PasswordAdapter:認証するUser に関連付けられたパスワード。
Supplier API に接続している場合は、ProjectId をデータを取得したいソーシングプロジェクトのId に設定します。
OAuth 認証
接続プロパティを設定した後、認証のためにOAuth 接続を設定する必要があります。
- AuthScheme をOAuthClient に設定します。
- サービスにアプリケーションを登録し、APIKey、OAuthClientId、およびOAuthClientSecret を取得する必要があります。
OAuth アプリケーションの作成について、詳しくはヘルプドキュメントを参照してください。
OAuth の自動リフレッシュ
以下を設定して、接続してください。
- APIKey:アプリケーション設定のApplication key。
- OAuthClientId:アプリケーション設定のOAuth Client Id。
- OAuthClientSecret:アプリケーション設定のOAuth Secret。
接続すると、本製品は自動でOAuth プロセスを完了します。
- 本製品はSAP Ariba からアクセストークンを取得し、それを使ってデータをリクエストします。
- 本製品はアクセストークンの期限が切れると自動的にリフレッシュします。
- OAuth 値はOAuthSettingsLocation で指定された場所に基づいてメモリに保存されます。
SAP Ariba Source にアクセスするSQL を実行
pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。
df = pandas.read_sql("""SELECT SMVendorID, Category FROM Vendors WHERE Region = 'USA'""", engine)
SAP Ariba Source のデータを可視化
DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、SAP Ariba Source のデータをグラフ化してみます。
df.plot(kind="bar", x="SMVendorID", y="Category") plt.show()

SAP Ariba Source からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。
ソースコード
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("saparibasource:///?API=SupplierDataAPIWithPagination-V4&APIKey=wWVLn7WTAXrIRMAzZ6VnuEj7Ekot5jnU&Environment=SANDBOX&Realm=testRealm&AuthScheme=OAuthClient&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") df = pandas.read_sql("""SELECT SMVendorID, Category FROM Vendors WHERE Region = 'USA'""", engine) df.plot(kind="bar", x="SMVendorID", y="Category") plt.show()