製品をチェック

無償トライアル:

無償トライアルへ

製品の情報と無償トライアルへ:

SASxpt Python Connector

SAS xpt (XPORT) ファイル連携用Python コネクタライブラリ。SASxpt データをPandas、SQLAlchemy、Dash、petl などの人気のPython ツールにシームレスに統合。

データ連携でお困りですか?

お問い合わせ

Python のDash ライブラリを使って、SAS xpt データ に連携するウェブアプリケーションを開発


CData Python Connector for SASXpt を使って、SAS xpt にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。


古川えりか
コンテンツスペシャリスト

sasxpt ロゴ画像

Python

python ロゴ画像
Python ロゴ画像

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SASXpt を使うことで、pandas モジュールとDash フレームワークでSAS xpt にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、SAS xpt に連携して、SAS xpt data をビジュアライズするシンプルなウエブアプリを作ります。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムSAS xpt data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。SAS xpt に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接SAS xpt 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

SAS xpt への接続

SAS xpt data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

ローカルSASXpt ファイルへの接続

URI をSASXpt ファイルを格納しているフォルダに設定すると、ローカルのSASXpt ファイルに接続できます。

S3 データソースへの接続

Amazon S3 ソースに接続してSASXpt ファイルを読み込むことができます。以下のプロパティを設定して接続します:

  • URI:接続するバケット内のフォルダに設定。
  • AWSAccessKey:AWS アカウントのアクセスキーに設定。
  • AWSSecretKey:AWS アカウントのシークレットキーに設定。
  • TemporaryLocalFolder:SASXptファイルを一時的にダウンロードするために使用するフォルダへのパス、またはURI に設定。

Azure Data Lake Storage Gen2 への接続

ADLS Gen2 に接続してSASXpt ファイルを読み込むことができます。以下のプロパティを設定して接続します:

  • URI:ファイルシステムの名前およびSASXpt ファイルにコンタクトするフォルダの名前に設定。
  • AzureAccount:Azure Data Lake storage アカウントの名前に設定。
  • AzureAccessKey:Azure Data Lake storage Gen 2 ストレージアカウントのアクセスキーに設定。
  • TemporaryLocalFolder:SASXptファイルを一時的にダウンロードするために使用するフォルダへのパス、またはURI に設定。

以下の手順に従い、必要なモジュールをインストールし、Python オブジェクト経由でSAS xpt にアクセスします。

必要なモジュールのインストール

pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でSAS xpt データ をビジュアライズ

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.sasxpt as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData SAS xpt Connector にSAS xpt data との接続を確立します。

cnxn = mod.connect("URI=C:/folder;")

SAS xpt にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = '100'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-sasxptedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、SAS xpt data をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='SAS xpt SampleTable_1 Data', barmode='stack')
		})
], className="container")

アプリをセットアップして、実行n

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。Python コードの最後はこのようです。

if __name__ == '__main__':
    app.run_server(debug=True)

では、Python でウェブアプリを稼働させて、ブラウザでSAS xpt data を見てみましょう。

python sasxpt-dash.py
SAS xpt data in a Dash web app (Salesforce is shown).

製品の無償トライアル情報

SAS xpt Python Connector の30日の無償トライアル をぜひダウンロードして、SAS xpt data への接続をPython アプリやスクリプトから簡単に作成しましょう。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.sasxpt as mod
import plotly.graph_objs as go

cnxn = mod.connect("URI=C:/folder;")

df = pd.read_sql("SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = '100'", cnxn)
app_name = 'dash-sasxptdataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Id, y=df.Column1, name='Id')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='SAS xpt SampleTable_1 Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)