各製品の資料を入手。
詳細はこちら →Python のDash ライブラリを使って、SAS xpt のデータ に連携するウェブアプリケーションを開発する方法
CData Python Connector を使って、SAS xpt にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。
最終更新日:2023-09-23
この記事で実現できるSAS xpt 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SASXpt を使うことで、pandas モジュールとDash フレームワークでSAS xpt にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、SAS xpt に連携して、SAS xpt のデータ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- SAS xpt をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Dash をはじめとする多様なデータ分析・BI ツールにSAS xpt のデータを連携
- ノーコードでの手軽な接続設定
必要なモジュールのインストール
まずは、pip で必要なモジュールおよびフレームワークをインストールします:
pip install pandas pip install dash pip install dash-daq
Python でSAS xpt のデータを可視化
必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。
まず、CData Connector を含むモジュールをインポートします:
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.sasxpt as mod import plotly.graph_objs as go
接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData SAS xpt Connector からSAS xpt のデータ との接続を確立します。
cnxn = mod.connect("URI=C:/folder;")
ローカルSASXpt ファイルへの接続
URI をSASXpt ファイルを格納しているフォルダに設定すると、ローカルのSASXpt ファイルに接続できます。
S3 データソースへの接続
Amazon S3 ソースに接続してSASXpt ファイルを読み込むことができます。以下のプロパティを設定して接続します:
- URI:接続するバケット内のフォルダに設定。
- AWSAccessKey:AWS アカウントのアクセスキーに設定。
- AWSSecretKey:AWS アカウントのシークレットキーに設定。
- TemporaryLocalFolder:SASXptファイルを一時的にダウンロードするために使用するフォルダへのパス、またはURI に設定。
Azure Data Lake Storage Gen2 への接続
ADLS Gen2 に接続してSASXpt ファイルを読み込むことができます。以下のプロパティを設定して接続します:
- URI:ファイルシステムの名前およびSASXpt ファイルにコンタクトするフォルダの名前に設定。
- AzureAccount:Azure Data Lake storage アカウントの名前に設定。
- AzureAccessKey:Azure Data Lake storage Gen 2 ストレージアカウントのアクセスキーに設定。
- TemporaryLocalFolder:SASXptファイルを一時的にダウンロードするために使用するフォルダへのパス、またはURI に設定。
SAS xpt にクエリを実行
read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。
df = pd.read_sql("""SELECT Id, Column1 FROM SampleTable_1 WHERE Column2 = '100'""", cnxn)
ウェブアプリケーションの設定
DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。
app_name = 'dash-sasxptedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash'
Layout 設定
次に、SAS xpt のデータ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。
trace = go.Bar(x=df.Id, y=df.Column1, name='Id') app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(alt='SAS xpt SampleTable_1 Data', barmode='stack') }) ], className="container")
アプリをセットアップして実行
接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。
if __name__ == '__main__': app.run_server(debug=True)
最後に、Python でウェブアプリを起動してブラウザでSAS xpt のデータ を見てみましょう。
python sasxpt-dash.py

ちゃんとデータが表示できてますね!
おわりに
SAS xpt Python Connector の30日の無償トライアル をぜひダウンロードして、SAS xpt のデータ への接続をPython アプリやスクリプトから簡単に作成してみてください。