Python pandas を使ってZendesk のデータを可視化・分析する方法

CData Python Connector を使えば、Python でZendesk をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23

この記事で実現できるZendesk 連携のシナリオ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for Zendesk は、pandas、Matplotlib、SQLAlchemy から使用することで Zendesk にデータ連携するPython アプリケーションを構築したり、Zendesk のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でZendesk にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Zendesk をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにZendesk のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてZendesk の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でZendesk にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でZendesk のデータを可視化

次は接続文字列を作成してZendesk に接続します。create_engine 関数を使って、Zendesk に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("zendesk:///?URL=https://[email protected]&Password=test123&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

Zendesk 接続プロパティの取得・設定方法

Zendesk に接続するには、https://{subdomain}.zendesk.com の形式でURL(Zendesk Support URL)を設定します。接続後、次のセクションの説明に従ってユーザー認証を行います。

また、TicketMetrics テーブルのアーカイブデータを扱うユーザーは、UseIncrementalAPI プロパティをTrue に設定する必要があります。

Zendesk への認証

Zendesk は、Zendesk インスタンスの設定に応じて、3種類の認証をサポートします。API トークン認証、OAuth 認証、Basic 認証(レガシー)です。

API トークン認証

API トークン認証を使用する場合は、E メールアドレスとApiToken を指定します。 AuthSchemeAPIToken に、User をE メールアドレスに設定し、Zendesk Support の管理画面で以下の設定を行います。

  1. Token アクセスを有効にします。
  2. Admin -> Channels-> API で、API トークンを管理します。一度にアクティブにできるトークンは1つだけです。トークンを削除すると、そのトークンは永久に無効化されます。
最後に、APIToken をアクティブなAPI トークンに設定します。

その他の認証方法についてはヘルプドキュメントを参照してください。

Zendesk にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Id, Subject FROM Tickets WHERE Industry = 'Floppy Disks'""", engine)

Zendesk のデータを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Zendesk のデータをグラフ化してみます。

df.plot(kind="bar", x="Id", y="Subject")
plt.show()
Zendesk データ in a Python plot (Salesforce is shown).

Zendesk からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("zendesk:///?URL=https://[email protected]&Password=test123&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT Id, Subject FROM Tickets WHERE Industry = 'Floppy Disks'""", engine)

df.plot(kind="bar", x="Id", y="Subject")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。