Model Context Protocol (MCP) finally gives AI models a way to access the business data needed to make them really useful at work. CData MCP Servers have the depth and performance to make sure AI has access to all of the answers.
Try them now for free →How to connect and process Amazon Marketplace data from Azure Databricks
Use CData, Azure, and Databricks to perform data engineering and data science on live Amazon Marketplace data.
Databricks is a cloud-based service that provides data processing capabilities through Apache Spark. When paired with the CData JDBC Driver, customers can use Databricks to perform data engineering and data science on live Amazon Marketplace data. This article walks through hosting the CData JDBC Driver in Azure, as well as connecting to and processing live Amazon Marketplace data in Databricks.
With built-in optimized data processing, the CData JDBC driver offers unmatched performance for interacting with live Amazon Marketplace data. When you issue complex SQL queries to Amazon Marketplace, the driver pushes supported SQL operations, like filters and aggregations, directly to Amazon Marketplace and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Amazon Marketplace data using native data types.
Install the CData JDBC Driver in Azure
To work with live Amazon Marketplace data in Databricks, install the driver through Azure Data Lake Storage (ADLS). (Please note that the method of connecting through DBFS, which previous versions of this article described, has been deprecated, but has not published an end-of-life.)
- Upload the JDBC JAR file to a blob container of your choice (i.e. "jdbcjars" container of the "databrickslibraries" storage account).
- Fetch the Account Key from the storage account by expanding "Security + networking" and clicking on "Access Keys". Show and copy whichever of the two keys you wish to use.
- Get the JDBC JAR file's URL by navigating to Containers, opening the specific container storing the JAR, and selecting the entry for the JDBC JAR file. This should open the file's details, where there should be a convenient button to copy the URL button to clipboard. This value will look similar to the below, though the "blob" component may vary depending on storage account type:
https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
- In the Configuration tab of your Databricks cluster, click on the Edit button and expand "Advanced options". From there, add the following Spark option (derived from the JAR URL's domain name) with your copied Account key as its value and click Confirm:
spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
- In the Libraries tab of your Databricks cluster, click on "Install new", and select the ADLS option. Specify the ABFSS URL for the driver JAR (also derived from the JAR URL's domain name), and click Install. The ABFSS URL should resemble the below:
abfss://[email protected]/cdata.jdbc.salesforce.jar
Connect to Amazon Marketplace from Databricks
With the JAR file installed, we are ready to work with live Amazon Marketplace data in Databricks. Start by creating a new notebook in your workspace. Name the workbook, make sure Python is selected as the language (which should be by default), click on Connect and under General Compute select the cluster where you installed the JDBC driver (should be selected by default).

Configure the Connection to Amazon Marketplace
Connect to Amazon Marketplace by referencing the class for the JDBC Driver and constructing a connection string to use in the JDBC URL. Additionally, you will need to set the RTK property in the JDBC URL (unless you are using a Beta driver). You can view the licensing file included in the installation for information on how to set this property.
driver = "cdata.jdbc.amazonmarketplace.AmazonMarketplaceDriver" url = "jdbc:amazonmarketplace:RTK=5246...;AWS Access Key Id=myAWSAccessKeyId;AWS Secret Key=myAWSSecretKey;MWS Auth Token=myMWSAuthToken;Seller Id=mySellerId;Marketplace=United States;"
Built-in Connection String Designer
For assistance in constructing the JDBC URL, use the connection string designer built into the Amazon Marketplace JDBC Driver. Either double-click the JAR file or execute the JAR file from the command-line.
java -jar cdata.jdbc.amazonmarketplace.jar
Fill in the connection properties and copy the connection string to the clipboard.
To connect to the Amazon Marketplace Webservice (MWS), AWSAccessKeyId, MWSAuthToken, AWSSecretKey and SellerId are required. You can optionally set the Marketplace property. For more information on obtaining values for these properties, refer to the Help documentation.

Load Amazon Marketplace Data
Once the connection is configured, you can load Amazon Marketplace data as a dataframe using the CData JDBC Driver and the connection information.
remote_table = spark.read.format ( "jdbc" ) \ .option ( "driver" , driver) \ .option ( "url" , url) \ .option ( "dbtable" , "Orders") \ .load ()
Display Amazon Marketplace Data
Check the loaded Amazon Marketplace data by calling the display function.
display (remote_table.select ("AmazonOrderId"))

Analyze Amazon Marketplace Data in Azure Databricks
If you want to process data with Databricks SparkSQL, register the loaded data as a Temp View.
remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )
The SparkSQL below retrieves the Amazon Marketplace data for analysis.
result = spark.sql("SELECT AmazonOrderId, OrderStatus FROM SAMPLE_VIEW WHERE IsReplacementOrder = True")
The data from Amazon Marketplace is only available in the target notebook. If you want to use it with other users, save it as a table.
remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

Download a free, 30-day trial of the CData JDBC Driver for Amazon Marketplace and start working with your live Amazon Marketplace data in Azure Databricks. Reach out to our Support Team if you have any questions.