Model Context Protocol (MCP) finally gives AI models a way to access the business data needed to make them really useful at work. CData MCP Servers have the depth and performance to make sure AI has access to all of the answers.
Try them now for free →Migrating data from Amazon Athena to Google BigQuery using CData SSIS Components.
Easily push Amazon Athena data to Google BigQuery using the CData SSIS Tasks for Amazon Athena and Google BigQuery.
Google BigQuery is a serverless, highly scalable, and cost-effective data warehouse designed to help organizations turn big data into actionable insights.
The CData SSIS Components enhance SQL Server Integration Services by enabling users to easily import and export data from various sources and destinations.
In this article, we explore the data type mapping considerations when exporting to BigQuery and walk through how to migrate Amazon Athena data to Google BigQuery using the CData SSIS Components for Amazon Athena and BigQuery.
Data Type Mapping
Google BigQuery Schema | CData Schema |
---|---|
STRING, GEOGRAPHY, JSON, INTERVAL |
string |
BYTES |
binary |
INTEGER |
long |
FLOAT |
double |
NUMERIC, BIGNUMERIC |
decimal |
BOOLEAN |
bool |
DATE |
date |
TIME |
time |
DATETIME, TIMESTAMP |
datetime |
STRUCT |
See below |
ARRAY |
See below |
STRUCT and ARRAY Types
Google BigQuery supports two kinds of types for storing compound values in a single row, STRUCT and ARRAY. In some places within Google BigQuery, these are also known as RECORD and REPEATED types.
A STRUCT is a fixed-size group of values that are accessed by name and can have different types. The component flattens structs so their fields can be accessed using dotted names. Note that these dotted names must be quoted.
An ARRAY is a group of values with the same type that can have any size. The component treats the array as a single compound value and reports it as a JSON aggregate. These types may be combined such that a STRUCT type contains an ARRAY field, or an ARRAY field is a list of STRUCT values.
Special Considerations
- Google BigQuery has both DATETIME (no timezone) and TIMESTAMP (with timezone) data types that the CData SSIS Components map to datetime based on the timezone of your local machine.
- In Google BigQuery, the NUMERIC type supports 38 digits of precision and up to 9 digits after the decimal point, while the BIGNUMERIC type supports 76 digits of precision and up to 38 digits after the decimal point. The CData SSIS Components for Google BigQuery automatically detects the precision/scale, but with the Destination Component users can manually map any high-precision columns.
-
INTERVAL data types:
-
The component represents INTERVAL types as strings. Whenever a query requires an INTERVAL type, it must specify the INTERVAL using the BigQuery SQL INTERVAL format:
YEAR-MONTH DAY HOUR:MINUTE:SECOND.FRACTION
-
For example, the value "5 years and 11 months, minus 10 days and 3 hours and 2.5 seconds" in the correct format is:
5-11 -10 -3:0:0.2.5
-
The component represents INTERVAL types as strings. Whenever a query requires an INTERVAL type, it must specify the INTERVAL using the BigQuery SQL INTERVAL format:
About Amazon Athena Data Integration
CData provides the easiest way to access and integrate live data from Amazon Athena. Customers use CData connectivity to:
- Authenticate securely using a variety of methods, including IAM credentials, access keys, and Instance Profiles, catering to diverse security needs and simplifying the authentication process.
- Streamline their setup and quickly resolve issue with detailed error messaging.
- Enhance performance and minimize strain on client resources with server-side query execution.
Users frequently integrate Athena with analytics tools like Tableau, Power BI, and Excel for in-depth analytics from their preferred tools.
To learn more about unique Amazon Athena use cases with CData, check out our blog post: https://www.cdata.com/blog/amazon-athena-use-cases.
Getting Started
Prerequisites
- Visual Studio 2022
- SQL Server Integration Services Projects extension for Visual Studio 2022
- CData SSIS Components for Google BigQuery
- CData SSIS Components for Amazon Athena
Create the project and add components
-
Open Visual Studio and create a new Integration Services Project.
- Add a new Data Flow Task to the Control Flow screen and open the Data Flow Task.
-
Add a CData Amazon Athena Source control and a CData GoogleBigQuery Destination control to the data flow task.
Configure the Amazon Athena source
Follow the steps below to specify properties required to connect to Amazon Athena.
-
Double-click the CData Amazon Athena Source to open the source component editor and add a new connection.
-
In the CData Amazon Athena Connection Manager, configure the connection properties, then test and save the connection.
Authenticating to Amazon Athena
To authorize Amazon Athena requests, provide the credentials for an administrator account or for an IAM user with custom permissions: Set AccessKey to the access key Id. Set SecretKey to the secret access key.
Note: Though you can connect as the AWS account administrator, it is recommended to use IAM user credentials to access AWS services.
Obtaining the Access Key
To obtain the credentials for an IAM user, follow the steps below:
- Sign into the IAM console.
- In the navigation pane, select Users.
- To create or manage the access keys for a user, select the user and then select the Security Credentials tab.
To obtain the credentials for your AWS root account, follow the steps below:
- Sign into the AWS Management console with the credentials for your root account.
- Select your account name or number and select My Security Credentials in the menu that is displayed.
- Click Continue to Security Credentials and expand the Access Keys section to manage or create root account access keys.
Authenticating from an EC2 Instance
If you are using the CData Data Provider for Amazon Athena 2018 from an EC2 Instance and have an IAM Role assigned to the instance, you can use the IAM Role to authenticate. To do so, set UseEC2Roles to true and leave AccessKey and SecretKey empty. The CData Data Provider for Amazon Athena 2018 will automatically obtain your IAM Role credentials and authenticate with them.
Authenticating as an AWS Role
In many situations it may be preferable to use an IAM role for authentication instead of the direct security credentials of an AWS root user. An AWS role may be used instead by specifying the RoleARN. This will cause the CData Data Provider for Amazon Athena 2018 to attempt to retrieve credentials for the specified role. If you are connecting to AWS (instead of already being connected such as on an EC2 instance), you must additionally specify the AccessKey and SecretKey of an IAM user to assume the role for. Roles may not be used when specifying the AccessKey and SecretKey of an AWS root user.
Authenticating with MFA
For users and roles that require Multi-factor Authentication, specify the MFASerialNumber and MFAToken connection properties. This will cause the CData Data Provider for Amazon Athena 2018 to submit the MFA credentials in a request to retrieve temporary authentication credentials. Note that the duration of the temporary credentials may be controlled via the TemporaryTokenDuration (default 3600 seconds).
Connecting to Amazon Athena
In addition to the AccessKey and SecretKey properties, specify Database, S3StagingDirectory and Region. Set Region to the region where your Amazon Athena data is hosted. Set S3StagingDirectory to a folder in S3 where you would like to store the results of queries.
If Database is not set in the connection, the data provider connects to the default database set in Amazon Athena.
-
After saving the connection, select "Table or view" and select the table or view to export into Google BigQuery, then close the CData Amazon Athena Source Editor.
Configure the Google BigQuery destination
With the Amazon Athena Source configured, we can configure the Google BigQuery connection and map the columns.
-
Double-click the CData Google BigQuery Destination to open the destination component editor and add a new connection.
-
In the CData GoogleBigQuery Connection Manager, configure the connection properties, then test and save the connection.
- Google uses the OAuth authentication standard. To access Google APIs on behalf of individual users, you can use the embedded credentials or you can register your own OAuth app. OAuth also enables you to use a service account to connect on behalf of users in a Google Apps domain. To authenticate with a service account, register an application to obtain the OAuth JWT values. In addition to the OAuth values, specify the DatasetId and ProjectId. See the "Getting Started" chapter of the help documentation for a guide to using OAuth.
Helpful connection properties
- QueryPassthrough: When this is set to True, queries are passed through directly to Google BigQuery.
- ConvertDateTimetoGMT: When this is set to True, the components will convert date-time values to GMT, instead of the local time of the machine.
- FlattenObjects: By default the component reports each field in a STRUCT column as its own column while the STRUCT column itself is hidden. When this is set to False, the top-level STRUCT is not expanded and is left as its own column. The value of this column is reported as a JSON aggregate.
- SupportCaseSensitiveTables: When this property is set to true, tables with the same name but different casing will be renamed so they are all reported in the metadata. By default, the provider treats table names as case-insensitive, so if multiple tables have the same name but different casing, only one will be reported in the metadata.
-
After saving the connection, select a table in the Use a Table menu and in the Action menu, select Insert.
-
On the Column Mappings tab, configure the mappings from the input columns to the destination columns.
Run the project
You can now run the project. After the SSIS Task has finished executing, data from your SQL table will be exported to the chosen table.