Discover how a bimodal integration strategy can address the major data management challenges facing your organization today.
Get the Report →How to Visualize Teradata Data in Python with pandas
Use pandas and other modules to analyze and visualize live Teradata data in Python.
The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for Teradata, the pandas & Matplotlib modules, and the SQLAlchemy toolkit, you can build Teradata-connected Python applications and scripts for visualizing Teradata data. This article shows how to use the pandas, SQLAlchemy, and Matplotlib built-in functions to connect to Teradata data, execute queries, and visualize the results.
With built-in optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Teradata data in Python. When you issue complex SQL queries from Teradata, the driver pushes supported SQL operations, like filters and aggregations, directly to Teradata and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).
Connecting to Teradata Data
Connecting to Teradata data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.
To connect to Teradata, provide authentication information and specify the database server name.
- User: Set this to the username of a Teradata user.
- Password: Set this to the password of the Teradata user.
- DataSource: Specify the Teradata server name, DBC Name, or TDPID.
- Port: Specify the port the server is running on.
- Database: Specify the database name. If not specified, the default database is used.
Follow the procedure below to install the required modules and start accessing Teradata through Python objects.
Install Required Modules
Use the pip utility to install the pandas & Matplotlib modules and the SQLAlchemy toolkit:
pip install pandas pip install matplotlib pip install sqlalchemy
Be sure to import the module with the following:
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Visualize Teradata Data in Python
You can now connect with a connection string. Use the create_engine function to create an Engine for working with Teradata data.
engine = create_engine("teradata:///?User=myuser&Password=mypassword&Server=localhost&Database=mydatabase")
Execute SQL to Teradata
Use the read_sql function from pandas to execute any SQL statement and store the resultset in a DataFrame.
df = pandas.read_sql("SELECT ProductId, ProductName FROM NorthwindProducts WHERE CategoryId = '5'", engine)
Visualize Teradata Data
With the query results stored in a DataFrame, use the plot function to build a chart to display the Teradata data. The show method displays the chart in a new window.
df.plot(kind="bar", x="ProductId", y="ProductName") plt.show()
Free Trial & More Information
Download a free, 30-day trial of the CData Python Connector for Teradata to start building Python apps and scripts with connectivity to Teradata data. Reach out to our Support Team if you have any questions.
Full Source Code
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("teradata:///?User=myuser&Password=mypassword&Server=localhost&Database=mydatabase") df = pandas.read_sql("SELECT ProductId, ProductName FROM NorthwindProducts WHERE CategoryId = '5'", engine) df.plot(kind="bar", x="ProductId", y="ProductName") plt.show()