本記事では CData サポート担当からこんなことを聞かれたらどこを確認すべきか?という観点で、よく頂くお問合せ内容をご紹介します。
記事はこちら →Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for AmazonS3 は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Amazon S3 にデータ連携するPython アプリケーションを構築し、Amazon S3 data をビジュアライズできます。 本記事では、SQLAlchemy でAmazon S3 に連携して、データを取得、 する方法を説明します。
CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムAmazon S3 data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Amazon S3 に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Amazon S3 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。
Amazon S3 data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。
Amazon S3 リクエストを認可するには、管理者アカウントまたはカスタム権限を持つIAM ユーザーの認証情報を入力します。AccessKey をアクセスキーID に設定します。SecretKey をシークレットアクセスキーに設定します。
Note: AWS アカウント管理者として接続できますが、AWS サービスにアクセスするにはIAM ユーザー認証情報を使用することをお勧めします。
尚、本製品はAmazon S3 のファイルの一覧表示やユーザー管理情報の取得用です。S3 に保管されているExcel、CSV、JSON などのファイル内のデータを読み込みたい場合には、Excel Driver、CSV Driver、JSON Driver をご利用ください。
IAM ユーザーの資格情報を取得するには:
AWS ルートアカウントの資格情報を取得するには:
多くの場合、認証にはAWS ルートユーザーのダイレクトなセキュリティ認証情報ではなく、IAM ロールを使用することをお勧めします。RoleARN を指定することでAWS ロールを代わりに使用できます。これにより、本製品は指定されたロールの資格情報を取得しようと試みます。
(すでにEC2 インスタンスなどで接続されているのではなく)AWS に接続している場合は、ロールを引き受けるIAM ユーザーのAccessKey とSecretKey を追加で指定する必要があります。AWS ルートユーザーのAccessKey および SecretKey を指定する場合、ロールは使用できません。
SSO 認証を必要とするユーザーおよびロールには、RoleARN およびPrincipalArn 接続プロパティを指定してください。各Identity Provider に固有のSSOProperties を指定し、AccessKey とSecretKey を空のままにする必要があります。これにより、本製品は一時的な認証資格情報を取得するために、リクエストでSSO 認証情報を送信します。
以下の手順でSQLAlchemy をインストールして、Python オブジェクトからAmazon S3 に接続します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、Amazon S3 data に連携するEngne を作成します。
engine = create_engine("amazons3///?AccessKey=a123&SecretKey=s123")
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、ObjectsACL テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class ObjectsACL(base): __tablename__ = "ObjectsACL" Name = Column(String,primary_key=True) OwnerId = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("amazons3///?AccessKey=a123&SecretKey=s123") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(ObjectsACL).filter_by(Name="TestBucket"): print("Name: ", instance.Name) print("OwnerId: ", instance.OwnerId) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
ObjectsACL_table = ObjectsACL.metadata.tables["ObjectsACL"] for instance in session.execute(ObjectsACL_table.select().where(ObjectsACL_table.c.Name == "TestBucket")): print("Name: ", instance.Name) print("OwnerId: ", instance.OwnerId) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
Amazon S3 Python Connector の30日の無償トライアル をぜひダウンロードして、Amazon S3 data への接続をPython アプリやスクリプトから簡単に作成しましょう。