製品をチェック

無償トライアル:

無償トライアルへ

製品の情報と無償トライアルへ:

Amazon Athena Python Connector

Amazon Athena へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにAmazon Athena をシームレスに統合。

Python pandas を使ってAmazon Athena データをビジュアライズ


CData Python Connector for AmazonAthena を使えば、Python でAmazon Athena をpandas などのライブラリで呼び出し、データ分析やビジュアライズが可能になります。


古川えりか
コンテンツスペシャリスト

athena ロゴ画像

Python

python ロゴ画像
pandas ロゴ画像

こんにちは!コンテンツスペシャリストの古川です。Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for AmazonAthena は、pandas、Matplotlib、SQLAlchemy から使用することで Amazon Athena にデータ連携するPython アプリケーションを構築したり、Amazon Athena データの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でAmazon Athena にリアルタイムアクセスし、クエリを実行して結果をビジュアライズする方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムAmazon Athena データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Amazon Athena に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Amazon Athena 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Amazon Athena データへの接続

まずは、右側のサイドバーからCData Pytthon Connector の無償トライアルをダウンロード・インストールしてください。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

Amazon Athena への接続

Amazon Athena リクエストの認証には、アカウントの管理のクレデンシャルか、IAM ユーザーのカスタムPermission を設定します。 AccessKey にAccess Key Id、SecretKey にはSecret Access Key を設定します。

Note: AWS アカウントアドミニストレータとしてアクセスできる場合でも、AWS サービスへの接続にはIAM ユーザークレデンシャルを使用することが推奨されます。

Access Key の取得

IAM ユーザーのクレデンシャル取得は以下のとおり:

  1. IAM コンソールにログイン。
  2. Navigation ペインで「ユーザー」を選択。
  3. ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してから「セキュリティ認証情報」タブを選択。

AWS ルートアカウントのクレデンシャル取得は以下のとおり:

  1. ルートアカウントの資格情報を使用してAWS 管理コンソールにサインイン。
  2. アカウント名または番号を選択し、表示されたメニューで「My Security Credentials」を選択。
  3. 「Continue to Security Credentials」をクリックし、「Access Keys」セクションを展開して、ルートアカウントのアクセスキーを管理または作成。

EC2 インスタンスからの認証

EC2 インスタンスから本製品を使用していて、そのインスタンスにIAM ロールが割り当てられている場合は、認証にIAM ロールを使用できます。 これを行うには、UseEC2Roles をtrue に設定しAccessKeySecretKey を空のままにします。 本製品は自動的にIAM ロールの認証情報を取得し、それらを使って認証します。

AWS ロールとして認証

多くの場合、認証にはAWS ルートユーザーのダイレクトなセキュリティ認証情報ではなく、IAM ロールを使用することをお勧めします。 代わりにRoleARN を指定してAWS ロールを使用できます。これにより、本製品は指定されたロールの資格情報を取得しようと試みます。 (すでにEC2 インスタンスなどで接続されているのではなく)AWS に接続している場合は、役割を担うIAM ユーザーのAccessKeySecretKey を追加で指定する必要があります。AWS ルートユーザーのAccessKey およびSecretKey を指定する場合、 ロールは使用できません。

MFA での認証

多要素認証を必要とするユーザーおよびロールには、MFASerialNumber およびMFAToken 接続プロパティを指定してください。 これにより、本製品は一時的な認証資格情報を取得するために、リクエストでMFA 認証情報を送信します。一時的な認証情報の有効期間 (デフォルトは3600秒)は、TemporaryTokenDuration プロパティを介して制御できます。

Amazon Athena への接続

AccessKeySecretKey プロパティに加え、DatabaseS3StagingDirectoryRegion を設定します。Region をAmazon Athena データがホストされているリージョンに設定します。S3StagingDirectory をクエリの結果を格納したいS3内のフォルダに設定します。

接続にDatabase が設定されていない場合は、本製品はAmazon Athena に設定されているデフォルトデータベースに接続します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でAmazon Athena にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でAmazon Athena データをビジュアライズ

次は接続文字列を作成してAmazon Athena に接続します。create_engine 関数を使って、Amazon Athena に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("amazonathena:///?AccessKey='a123'&SecretKey='s123'&Region='IRELAND'&Database='sampledb'&S3StagingDirectory='s3://bucket/staging/'")

Amazon Athena にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT Name, TotalDue FROM Customers WHERE CustomerId = '12345'""", engine)

Amazon Athena データをビジュアライズ

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Amazon Athena データをグラフ化してみます。

df.plot(kind="bar", x="Name", y="TotalDue")
plt.show()
Amazon Athena data in a Python plot (Salesforce is shown).

製品の無償トライアル情報

Amazon Athena Python Connector の30日の無償トライアル をぜひダウンロードして、Amazon Athena への接続をPython アプリやスクリプトから簡単に作成しましょう。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("amazonathena:///?AccessKey='a123'&SecretKey='s123'&Region='IRELAND'&Database='sampledb'&S3StagingDirectory='s3://bucket/staging/'")
df = pandas.read_sql("""SELECT Name, TotalDue FROM Customers WHERE CustomerId = '12345'""", engine)

df.plot(kind="bar", x="Name", y="TotalDue")
plt.show()