Python でElasticsearch データをETL

詳細情報をご希望ですか?

無償トライアル:

ダウンロードへ

製品の詳細情報へ:

Elasticsearch Python Connector

Elasticsearch へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにElasticsearch をシームレスに統合。



CData Python Connector for Elasticsearch を使って、Python petl でElasticsearch data のETL 連携・パイプラインアプリケーションを作成。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for Elasticsearch とpetl フレームワークを使って、Elasticsearch に連携するPython アプリや、Elasticsearch データをETL することが可能です。本記事では、CData Python Connector をpetl と一緒に使い、ETL 処理を実装します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムElasticsearch data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。Elasticsearch に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接Elasticsearch 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

Elasticsearch Data への接続

Elasticsearch data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

接続するには、Server およびPort 接続プロパティを設定します。 認証には、User とPassword プロパティ、PKI (public key infrastructure)、またはその両方を設定します。 PKI を使用するには、SSLClientCert、SSLClientCertType、SSLClientCertSubject、およびSSLClientCertPassword プロパティを設定します。

本製品は、認証とTLS/SSL 暗号化にX-Pack Security を使用しています。TLS/SSL で接続するには、Server 値に'https://' を接頭します。Note: PKI を 使用するためには、TLS/SSL およびクライアント認証はX-Pack 上で有効化されていなければなりません。

接続されると、X-Pack では、設定したリルムをベースにユーザー認証およびロールの許可が実施されます。

CData Elasticsearch Connector をインストールしたら、次のように必要なモジュールをインストールし、Python オブジェクトでElasticsearch にアクセスします。

必要なモジュールのインストール

pip で必要なモジュールおよびフレームワークをインストールします:

pip install petl
pip install pandas

Python でElasticsearch データをETL 処理するアプリを構築

モジュールとフレームワークをインストールしたら、ETL アプリケーションを組んでいきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に付いています。

CData Connector を含むモジュールをインポートします:

import petl as etl
import pandas as pd
import cdata.elasticsearch as mod

接続文字列で接続を確立します。connect 関数を使って、CData Elasticsearch Connector からElasticsearch への接続を行います

cnxn = mod.connect("Server=127.0.0.1;Port=9200;User=admin;Password=123456;")

Elasticsearch をクエリするSQL 文の作成

Elasticsearch にはSQL でデータアクセスが可能です。Orders エンティティからのデータを読み出します。

sql = "SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'"

Elasticsearch Data のETL 処理

DataFrame に格納されたクエリ結果を使って、petl でExtract(取得)、Transform(加工)、Load(ロード)を組みます。この例では、Elasticsearch data を取得して、Freight カラムでデータをソートして、CSV ファイルにデータをロードします。

table1 = etl.fromdb(cnxn,sql)

table2 = etl.sort(table1,'Freight')

etl.tocsv(table2,'orders_data.csv')

CData Python Connector for Elasticsearch を使えば、データベースを扱う場合と同感覚で、Elasticsearch data を扱うことができ、petl のようなETL パッケージから直接データにアクセスが可能になります。

製品の無償トライアル情報

Elasticsearch Python Connector の30日の無償トライアル をぜひダウンロードして、Elasticsearch data への接続をPython アプリやスクリプトから簡単に作成しましょう。



フルソースコード

import petl as etl
import pandas as pd
import cdata.elasticsearch as mod

cnxn = mod.connect("Server=127.0.0.1;Port=9200;User=admin;Password=123456;")

sql = "SELECT OrderName, Freight FROM Orders WHERE ShipCity = 'New York'"

table1 = etl.fromdb(cnxn,sql)

table2 = etl.sort(table1,'Freight')

etl.tocsv(table2,'orders_data.csv')