製品をチェック

Epicor Kinetic Connector の30日間無償トライアルをダウンロード

 ダウンロードはこちら

製品の詳細

Epicor Kinetic アイコン Epicor Kinetic Python Connector 相談したい

Epicor Kinetic へのデータ連携用のPython Connector ライブラリ。pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにEpicor Kinetic をシームレスに統合。

Python pandas を使ってEpicor Kinetic データを可視化・分析する方法

CData Python Connector を使えば、Python でEpicor Kinetic をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
ウェブデベロッパー

最終更新日:2023-09-23
epicorkinetic ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for EpicorKinetic は、pandas、Matplotlib、SQLAlchemy から使用することで Epicor Kinetic にデータ連携するPython アプリケーションを構築したり、Epicor Kinetic データの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でEpicor Kinetic にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Epicor Kinetic をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにEpicor Kinetic データを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてEpicor Kinetic の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でEpicor Kinetic にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でEpicor Kinetic データを可視化

次は接続文字列を作成してEpicor Kinetic に接続します。create_engine 関数を使って、Epicor Kinetic に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("epicorkinetic:///?Service=Erp.BO.CustomerSvc&ERPInstance=MyInstance&URL=https://myaccount.epicorsaas.com&User=username&Password=password&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

ERP インスタンスに接続するには、次の接続プロパティを指定してください。

  • Url:ERP インスタンスをホストしているサーバーのURL。例えば、https://myserver.EpicorSaaS.com
  • ERPInstance:ERP インスタンス名。
  • User:アカウントのユーザー名。
  • Password:アカウントのパスワード。
  • Service:データを取得するサービス。例えば、BaqSvc。

また、オプションで次の接続プロパティを指定することもできます。

  • ApiKey:アカウント設定に応じて、いくつかのサービスへの接続に必要となるオプションのキー。
  • ApiVersion:デフォルトはv1。新しいEpicor API を使用するにはv2 に設定してください。
  • Company:ApiVersion をv2 に設定した場合は必須になります。

Epicor Kinetic にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT CustNum, Company FROM Customers WHERE CompanyName = 'CompanyName'""", engine)

Epicor Kinetic データを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Epicor Kinetic データをグラフ化してみます。

df.plot(kind="bar", x="CustNum", y="Company")
plt.show()
Epicor Kinetic データ in a Python plot (Salesforce is shown).

Epicor Kinetic からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("epicorkinetic:///?Service=Erp.BO.CustomerSvc&ERPInstance=MyInstance&URL=https://myaccount.epicorsaas.com&User=username&Password=password&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("""SELECT CustNum, Company FROM Customers WHERE CompanyName = 'CompanyName'""", engine)

df.plot(kind="bar", x="CustNum", y="Company")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。