ノーコードでクラウド上のデータとの連携を実現。
詳細はこちら →無償トライアル:
無償トライアルへ製品の情報と無償トライアルへ:
QuickBooks へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにQuickBooks をシームレスに統合。
古川えりか
コンテンツスペシャリスト
Python
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for QuickBooks は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで QuickBooks にデータ連携するPython アプリケーションを構築し、QuickBooks データをビジュアライズできます。 本記事では、SQLAlchemy でQuickBooks に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムQuickBooks データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。QuickBooks に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接QuickBooks 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。
QuickBooks データへの連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。
ローカルQuickBooks インスタンスへの接続には接続プロパティ入力は不要です。
本製品は、リモートコネクタ経由でQuickBooks にリクエストを作成します。リモートコネクタはQuickBooks と同じマシン上で動作し、軽量の組み込みWeb サーバーを介して接続を受け入れます。サーバーはSSL/TLS をサポートし、ユーザーにリモートマシンからのセキュアな接続を可能にします。
初めて接続するときは、本製品をQuickBooks で認証する必要があります。詳しくは、ヘルプドキュメントの「Using the Remote Connector」を参照してください。
以下の手順でSQLAlchemy をインストールして、Python オブジェクトからQuickBooks に接続します。
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
次は、接続文字列で接続を確立します。create_engine 関数を使って、QuickBooks データに連携するEngne を作成します。
engine = create_engine("quickbooks///?URL=http://remotehost:8166&User=admin&Password=admin123")
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Customers テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Customers(base): __tablename__ = "Customers" Name = Column(String,primary_key=True) CustomerBalance = Column(String) ...
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
engine = create_engine("quickbooks///?URL=http://remotehost:8166&User=admin&Password=admin123") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Customers).filter_by(Type="Commercial"): print("Name: ", instance.Name) print("CustomerBalance: ", instance.CustomerBalance) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
Customers_table = Customers.metadata.tables["Customers"] for instance in session.execute(Customers_table.select().where(Customers_table.c.Type == "Commercial")): print("Name: ", instance.Name) print("CustomerBalance: ", instance.CustomerBalance) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
QuickBooks データへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、QuickBooks にすべての追加インスタンスを送ります。
new_rec = Customers(Name="placeholder", Type="Commercial") session.add(new_rec) session.commit()
QuickBooks データの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、QuickBooks にレコードを追加します。
updated_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.Type = "Commercial" session.commit()
QuickBooks データの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Customers).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
QuickBooks Python Connector の30日の無償トライアル をぜひダウンロードして、QuickBooks データへの接続をPython アプリやスクリプトから簡単に作成しましょう。