製品をチェック

SFTP Connector の30日間無償トライアルをダウンロード

 ダウンロードはこちら

製品の詳細

SFTP アイコン SFTP Python Connector 相談したい

SFTP へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにSFTP をシームレスに統合。

Python のDash ライブラリを使って、SFTP データ に連携するウェブアプリケーションを開発する方法

CData Python Connector を使って、SFTP にデータ連携するPython ウェブアプリケーションを開発できます。pandas とDash を使って作成してみます。

加藤龍彦
ウェブデベロッパー

最終更新日:2023-09-23
sftp ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SFTP を使うことで、pandas モジュールとDash フレームワークでSFTP にデータ連携するアプリケーションを効率的に開発することができます。本記事では、pandas、Dash とCData Connector を使って、SFTP に連携して、SFTP データ をビジュアライズするシンプルなウェブアプリを作る方法をご紹介します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. SFTP をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Dash をはじめとする多様なデータ分析・BI ツールにSFTP データを連携
  3. ノーコードでの手軽な接続設定

必要なモジュールのインストール

まずは、pip で必要なモジュールおよびフレームワークをインストールします:

pip install pandas
pip install dash
pip install dash-daq

Python でSFTP データを可視化

必要なモジュールとフレームワークがインストールされたら、ウェブアプリを開発していきます。コードのスニペットは以下の通りです。フルコードは記事の末尾に掲載しているので、参考にしてください。

まず、CData Connector を含むモジュールをインポートします:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.sftp as mod
import plotly.graph_objs as go

接続文字列を使ってデータへの接続を確立します。connect 関数を使ってCData SFTP Connector からSFTP データ との接続を確立します。

cnxn = mod.connect("RemoteHost=MyFTPServer;")

FTP は、SFTP プロトコルを使用してSFTP サーバーとの間のファイル転送を行います。接続するにはRemoteHost を指定します。FTP はUser、Password、および公開鍵認証(SSHClientCert)を使用します。 SSHAuthMode を選択し、選択に基づいて接続値を指定します。

次の接続プロパティを設定し、ファイルシステムのリレーショナルビューをコントロールします。

  • RemotePath: 現在の作業ディレクトリに設定。
  • TableDepth: ビューとしてレポートするサブフォルダの深度を制御するために設定。
  • FileRetrievalDepth: ファイルを再帰的に取得し、Root テーブルにリストするために設定。
ストアドプロシージャは、ファイル、のダウンロード、アップロード、およびプロトコルコマンドの送信に利用できます。SQL を使用してサーバーと対話する方法の詳細については、ヘルプドキュメントの「データモデル」を参照してください。

SFTP にクエリを実行

read_sql 関数を使って、padas からSQL 文を発行し、DataFrame に結果を格納します。

df = pd.read_sql("""SELECT Filesize, Filename FROM MyDirectory WHERE FilePath = '/documents/doc.txt'""", cnxn)

ウェブアプリケーションの設定

DataFrame に格納されたクエリ結果を使って、ウェブアプリにname、stylesheet、title を設定していきます。

app_name = 'dash-sftpedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Layout 設定

次に、SFTP データ をベースにした棒グラフを作詞し、アプリのレイアウトを設定します。

trace = go.Bar(x=df.Filesize, y=df.Filename, name='Filesize')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='SFTP MyDirectory Data', barmode='stack')
		})
], className="container")

アプリをセットアップして実行

接続、アプリ、レイアウトを定義したら、アプリを実行してみましょう。以下のコードで実行できます。

if __name__ == '__main__':
    app.run_server(debug=True)

最後に、Python でウェブアプリを起動してブラウザでSFTP データ を見てみましょう。

python sftp-dash.py
Dash のウェブアプリでSFTP データ を表示

ちゃんとデータが表示できてますね!

おわりに

SFTP Python Connector の30日の無償トライアル をぜひダウンロードして、SFTP データ への接続をPython アプリやスクリプトから簡単に作成してみてください。



import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.sftp as mod
import plotly.graph_objs as go

cnxn = mod.connect("RemoteHost=MyFTPServer;")

df = pd.read_sql("SELECT Filesize, Filename FROM MyDirectory WHERE FilePath = '/documents/doc.txt'", cnxn)
app_name = 'dash-sftpdataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Filesize, y=df.Filename, name='Filesize')

app.layout = html.Div(children=[html.H1("CData Extention + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(alt='SFTP MyDirectory Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。