今すぐお試しください!

製品の詳細CData Python Connector for SFTP を確認して、無償評価版をダウンロード:

今すぐダウンロード

SQLAlchemy ORM を使って、Python でSFTP データに連携

CData Python Connector for SFTP を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でSFTP にOR マッピング可能に。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SFTP は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで SFTP にデータ連携するPython アプリケーションを構築し、SFTP data をビジュアライズできます。 本記事では、SQLAlchemy でSFTP に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connector は、ビルトインされた効率的なデータプロセスにより、リアルタイムSFTP data データにPython からアクセスし、高いパフォーマンスと接続性を発揮します。SFTP に複雑なクエリを投げる際に、ドライバーはフィルタリング、集計などがサポートされている場合、SQL 処理を直接SFTP 側に行わせ、サポートされていないSQL 処理については、組み込まれたSQL エンジンによりクライアント側で処理を行います(特にJOIN やSQL 関数など)。

SFTP Data への接続

SFTP data への連携は、RDB ソースへのアクセスと同感覚で行うことができます。必要な接続プロパティを使って接続文字列を作成します。本記事では、接続文字列をcreate_engine 関数のパラメータとして送ります。

FTP は、SFTP プロトコルを使用してSFTP サーバーとの間のファイル転送を行います。接続するにはRemoteHost を指定します。FTP はUser、Password、および公開鍵認証(SSHClientCert)を使用します。 SSHAuthMode を選択し、選択に基づいて接続値を指定します。

次の接続プロパティを設定し、ファイルシステムのリレーショナルビューをコントロールします。

  • RemotePath: 現在の作業ディレクトリに設定。
  • TableDepth: ビューとしてレポートするサブフォルダの深度を制御するために設定。
  • FileRetrievalDepth: ファイルを再帰的に取得し、Root テーブルにリストするために設定。
ストアドプロシージャは、ファイル、のダウンロード、アップロード、およびプロトコルコマンドの送信に利用できます。SQL を使用してサーバーと対話する方法の詳細については、ヘルプドキュメントの「データモデル」を参照してください。

以下の手順でSQLAlchemy をインストールして、Python オブジェクトからSFTP に接続します。

必要なモジュールのインストールs

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でSFTP Data をモデル化します

次は、接続文字列で接続を確立します。create_engine 関数を使って、SFTP data に連携するEngne を作成します。

engine = create_engine("sftp///?RemoteHost=MyFTPServer")

SFTP Data のマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、MyDirectory テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class MyDirectory(base):
	__tablename__ = "MyDirectory"
	Filesize = Column(String,primary_key=True)
	Filename = Column(String)
	...

SFTP Data をクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("sftp///?RemoteHost=MyFTPServer")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(MyDirectory).filter_by(FilePath="/documents/doc.txt"):
	print("Filesize: ", instance.Filesize)
	print("Filename: ", instance.Filename)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

MyDirectory_table = MyDirectory.metadata.tables["MyDirectory"]
for instance in session.execute(MyDirectory_table.select().where(MyDirectory_table.c.FilePath == "/documents/doc.txt")):
	print("Filesize: ", instance.Filesize)
	print("Filename: ", instance.Filename)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

SFTP Data の挿入(INSERT)

SFTP data への挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、SFTP にすべての追加インスタンスを送ります。

new_rec = MyDirectory(Filesize="placeholder", FilePath="/documents/doc.txt")
session.add(new_rec)
session.commit()

SFTP Data を更新(UPDATE)

SFTP data の更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、SFTP にレコードを追加します。

updated_rec = session.query(MyDirectory).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.FilePath = "/documents/doc.txt"
session.commit()

SFTP Data を削除(DELETE)

SFTP data の削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(MyDirectory).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

製品の無償トライアル情報

SFTP Python Connector の30日の無償トライアル をぜひダウンロードして、SFTP data への接続をPython アプリやスクリプトから簡単に作成しましょう。

 
 
ダウンロード