製品をチェック

EnterpriseDB Connector の30日間無償トライアルをダウンロード

 30日間の無償トライアルへ

製品の詳細

EnterpriseDB アイコン EnterpriseDB Python Connector 相談したい

EnterpriseDB データ接続用のPython コネクタライブラリ。Pandas、SQLAlchemy、Dash & petl など人気のPython ツールとEnterpriseDB を連携。

SQLAlchemy ORM を使って、Python でEnterpriseDB データに連携する方法

CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でEnterpriseDB にOR マッピング可能に。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23
enterprisedb ロゴ

CData

python ロゴ画像
Python ロゴ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for EnterpriseDB は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで EnterpriseDB にデータ連携するPython アプリケーションを構築し、EnterpriseDB データを可視化できます。 本記事では、SQLAlchemy でEnterpriseDB に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. EnterpriseDB をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Python をはじめとする多様なデータ分析・BI ツールにEnterpriseDB データを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてEnterpriseDB の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

必要なモジュールのインストール

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でEnterpriseDB データをモデル化

次は、接続文字列で接続を確立します。create_engine 関数を使って、EnterpriseDB データに連携するEngne を作成します。

engine = create_engine("enterprisedb///?User=postgres&Password=admin&Database=postgres&Server=127.0.0.1&Port=5444")

データに接続するには、以下の接続プロパティが必要です。

  • Server: EnterpriseDB データベースをホスティングしているサーバーのホスト名またはIP アドレス。
  • Port: EnterpriseDB データベースをホスティングしているサーバーのポート。

オプションで、以下を設定することもできます。

  • Database: EnterpriseDB サーバーに接続する場合のデフォルトのデータベース。設定されていない場合は、ユーザーのデフォルトデータベースが使用されます。

Basic 認証による接続

Basic 認証を使って認証するには、以下を設定します。

  • User:EnterpriseDB サーバーに認証する際に使われるユーザー。
  • Password:EnterpriseDB サーバーに認証する際に使われるパスワード。

SSL 認証による接続

SSL 認証を利用して、セキュアなセッションを介してEnterpriseDB データに接続できます。以下の接続プロパティを設定して、データに接続します。

  • SSLClientCert:クライアント証明書のための証明書ストア名に設定します。クライアントとサーバーの両方のマシンでトラストストアとキーストアが保持される2-way SSL の場合に使用されます。
  • SSLClientCertPassword:クライアント証明書ストアがパスワードで保護されている場合、この値をストアのパスワードに設定します。
  • SSLClientCertSubject:TLS/SSL クライアント証明書のSubject。ストア内の証明書を検索するために使用されます。
  • SSLClientCertType:クライアントストアの証明書タイプ。
  • SSLServerCert:サーバーが受け入れ可能な証明書。

EnterpriseDB データのマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Orders(base):
	__tablename__ = "Orders"
	ShipName = Column(String,primary_key=True)
	ShipCity = Column(String)
	...

EnterpriseDB データをクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("enterprisedb///?User=postgres&Password=admin&Database=postgres&Server=127.0.0.1&Port=5444")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Orders).filter_by(ShipCountry="USA"):
	print("ShipName: ", instance.ShipName)
	print("ShipCity: ", instance.ShipCity)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Orders_table = Orders.metadata.tables["Orders"]
for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")):
	print("ShipName: ", instance.ShipName)
	print("ShipCity: ", instance.ShipCity)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

EnterpriseDB データの挿入(INSERT)

EnterpriseDB データへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、EnterpriseDB にすべての追加インスタンスを送ります。

new_rec = Orders(ShipName="placeholder", ShipCountry="USA")
session.add(new_rec)
session.commit()

EnterpriseDB データを更新(UPDATE)

EnterpriseDB データの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、EnterpriseDB にレコードを追加します。

updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.ShipCountry = "USA"
session.commit()

EnterpriseDB データを削除(DELETE)

EnterpriseDB データの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

EnterpriseDB からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。