各製品の資料を入手。
詳細はこちら →Apache Airflow でAmazon S3 のデータに連携したワークフローを作る
CData JDBC Driver を使ってApache Airflow からAmazon S3 のデータにアクセスして操作します。
最終更新日:2022-09-07
この記事で実現できるAmazon S3 連携のシナリオ
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for AmazonS3 と組み合わせることで、Airflow からリアルタイムAmazon S3 のデータに連携できます。 この記事では、Apache Airflow インスタンスからAmazon S3 のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムAmazon S3 のデータを扱う上で高いパフォーマンスを提供します。 Amazon S3 にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのAmazon S3 側でサポートしているSQL 操作をAmazon S3 に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってAmazon S3 のデータを操作および分析できます。
Amazon S3 への接続を構成する
組み込みの接続文字列デザイナー
JDBC URL の作成の補助として、Amazon S3 JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.amazons3.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Amazon S3 リクエストを認可するには、管理者アカウントまたはカスタム権限を持つIAM ユーザーの認証情報を入力します。AccessKey をアクセスキーID に設定します。SecretKey をシークレットアクセスキーに設定します。
Note: AWS アカウント管理者として接続できますが、AWS サービスにアクセスするにはIAM ユーザー認証情報を使用することをお勧めします。
尚、CData 製品はAmazon S3 のファイルの一覧表示やユーザー管理情報の取得用です。S3 に保管されているExcel、CSV、JSON などのファイル内のデータを読み込みたい場合には、Excel Driver、CSV Driver、JSON Driver をご利用ください。
アクセスキーの取得
IAM ユーザーの資格情報を取得するには:
- IAM コンソールにサインインします。
- ナビゲーションペインで「ユーザー」を選択します。
- ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してから「セキュリティ認証情報」タブを選択します。
AWS ルートアカウントの資格情報を取得するには:
- ルートアカウントの資格情報を使用してAWS 管理コンソールにサインインします。
- アカウント名または番号を選択し、表示されたメニューで「My Security Credentials」を選択します。
- 「Continue to Security Credentials」をクリックし、「Access Keys」セクションを展開して、ルートアカウントのアクセスキーを管理または作成します。
AWS ロールとして認証
多くの場合、認証にはAWS ルートユーザーのダイレクトなセキュリティ認証情報ではなく、IAM ロールを使用することをお勧めします。RoleARN を指定することでAWS ロールを代わりに使用できます。これにより、CData 製品は指定されたロールの資格情報を取得しようと試みます。
(すでにEC2 インスタンスなどで接続されているのではなく)AWS に接続している場合は、ロールを引き受けるIAM ユーザーのAccessKey とSecretKey を追加で指定する必要があります。AWS ルートユーザーのAccessKey および SecretKey を指定する場合、ロールは使用できません。
SSO 認証
SSO 認証を必要とするユーザーおよびロールには、RoleARN およびPrincipalArn 接続プロパティを指定してください。各Identity Provider に固有のSSOProperties を指定し、AccessKey とSecretKey を空のままにする必要があります。これにより、CData 製品は一時的な認証資格情報を取得するために、リクエストでSSO 認証情報を送信します。

クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:amazons3:RTK=5246...;AccessKey=a123;SecretKey=s123;
|
Database Driver Class Name | cdata.jdbc.amazons3.AmazonS3Driver |
Airflow でJDBC 接続を確立する
- Apache Airflow インスタンスにログインします。
- Airflow インスタンスのナビゲーションバーで、「Admin」にカーソルを合わせ、「Connections」をクリックします。
- 次の画面で「+」マークをクリックして新しい接続を作成します。
- Add Connection フォームで、必要な接続プロパティを入力します。
- Connection Id:接続の名前:amazons3_jdbc
- Connection Type:JDBC Connection
- Connection URL:上記のJDBC 接続URL:
jdbc:amazons3:RTK=5246...;AccessKey=a123;SecretKey=s123;
- Driver Class:cdata.jdbc.amazons3.AmazonS3Driver
- Driver Path:PATH/TO/cdata.jdbc.amazons3.jar
- フォームの下にある「Test」ボタンをクリックし、新規の接続をテストします。
- 新規接続を保存すると、新しく表示される画面に、接続リストに新しい行が追加されたことを示す緑のバナーが表示されます。
DAG を作成する
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにAmazon S3 のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
- はじめに、Home ディレクトリにある「airflow」フォルダに移動します。その中に新しいディレクトリを作成し、タイトルを「dags」とします。 ここに、UI に表示されるAirflow のDAG を構築するPython ファイルを格納します。
- 次に新しいPython ファイルを作成し、タイトルをamazon s3_hook.py にします。この新規ファイル内に、次のコードを挿入します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="amazon s3_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()
- このファイルを保存し、Airflow インスタンスをリフレッシュします。DAG リストの中に、「amazon s3_hook」というタイトルの新しいDAG が表示されるはずです。
- このDAG をクリックし、新しく表示される画面で一時停止解除スイッチをクリックして青色にし、トリガー(=play)ボタンをクリックしてDAG を実行します。この操作で、amazon s3_hook.py ファイルのSQL クエリを実行し、結果をCSV としてコード内で指定したファイルパスにエクスポートします。
- 新規のDAG を実行後、Downloads フォルダ(またはPython スクリプト内で選択したフォルダ)を確認し、CSV ファイルが作成されていることを確認します(本ワークフローの場合はaccount.csv です)。
- CSV ファイルを開くと、Apache Airflow によってAmazon S3 のデータがCSV 形式で利用できるようになったことが確認できます。