Apache Airflow でGoogle Data Catalog のデータに連携したワークフローを作る

CData JDBC Driver を使ってApache Airflow からGoogle Data Catalog のデータにアクセスして操作します。

古川えりか
コンテンツスペシャリスト

最終更新日:2022-09-07

この記事で実現できるGoogle Data Catalog 連携のシナリオ

こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。

Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for GoogleDataCatalog と組み合わせることで、Airflow からリアルタイムGoogle Data Catalog のデータに連携できます。 この記事では、Apache Airflow インスタンスからGoogle Data Catalog のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。

最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムGoogle Data Catalog のデータを扱う上で高いパフォーマンスを提供します。 Google Data Catalog にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのGoogle Data Catalog 側でサポートしているSQL 操作をGoogle Data Catalog に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってGoogle Data Catalog のデータを操作および分析できます。

Google Data Catalog への接続を構成する

組み込みの接続文字列デザイナー

JDBC URL の作成の補助として、Google Data Catalog JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。

java -jar cdata.jdbc.googledatacatalog.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

Google Data Catalog 接続プロパティの取得・設定方法

認証プロパティを追加する前に、次の接続プロパティを設定してください。

  • OrganizationId:接続するGoogle Cloud Platform の組織リソースに関連付けられたID。これはGCP コンソールに移動して確認してください。 「プロジェクト」ドロップダウンメニューを開き、リストから組織へのリンクをクリックします。このページから組織ID を取得できます。
  • ProjectId:接続するGCP のプロジェクトリソースに関連付けられたID。GCP コンソールのダッシュボードに移動し、「プロジェクトを選択」のメニューからお好みのプロジェクトを選択して確認してください。プロジェクトID は、「プロジェクト情報」項目に表示されます。

Google Data Catalog への認証

CData 製品は、認証にユーザーアカウント、サービスアカウント、およびGCP インスタンスアカウントの使用をサポートします。

OAuth の設定方法については、ヘルプドキュメントの「OAuth」セクションを参照してください。

組み込みの接続文字列デザイナーを使ってJDBC URL を生成(google data catalog の場合)

クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。

以下は、JDBC 接続で要求される必須プロパティです。

プロパティ
Database Connection URL jdbc:googledatacatalog:RTK=5246...;ProjectId=YourProjectId;InitiateOAuth=GETANDREFRESH
Database Driver Class Namecdata.jdbc.googledatacatalog.GoogleDataCatalogDriver

Airflow でJDBC 接続を確立する

  1. Apache Airflow インスタンスにログインします。
  2. Airflow インスタンスのナビゲーションバーで、「Admin」にカーソルを合わせ、「Connections」をクリックします。 connections をクリック
  3. 次の画面で「+」マークをクリックして新しい接続を作成します。
  4. Add Connection フォームで、必要な接続プロパティを入力します。
    • Connection Id:接続の名前:googledatacatalog_jdbc
    • Connection Type:JDBC Connection
    • Connection URL:上記のJDBC 接続URL:jdbc:googledatacatalog:RTK=5246...;ProjectId=YourProjectId;InitiateOAuth=GETANDREFRESH
    • Driver Class:cdata.jdbc.googledatacatalog.GoogleDataCatalogDriver
    • Driver Path:PATH/TO/cdata.jdbc.googledatacatalog.jar
    JDBC 接続フォームを追加
  5. フォームの下にある「Test」ボタンをクリックし、新規の接続をテストします。
  6. 新規接続を保存すると、新しく表示される画面に、接続リストに新しい行が追加されたことを示す緑のバナーが表示されます。 新規接続が追加

DAG を作成する

Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにGoogle Data Catalog のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。

  1. はじめに、Home ディレクトリにある「airflow」フォルダに移動します。その中に新しいディレクトリを作成し、タイトルを「dags」とします。 ここに、UI に表示されるAirflow のDAG を構築するPython ファイルを格納します。
  2. 次に新しいPython ファイルを作成し、タイトルをgoogle data catalog_hook.py にします。この新規ファイル内に、次のコードを挿入します。
    		import time
    		from datetime import datetime
    		from airflow.decorators import dag, task
    		from airflow.providers.jdbc.hooks.jdbc import JdbcHook
    		import pandas as pd
    
    		# Dag の宣言
    		@dag(dag_id="google data catalog_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv'])
    
    		# Dag となる関数を定義(取得するテーブルは必要に応じて変更してください)
    		def extract_and_load():
    		# Define tasks
    			@task()
    			def jdbc_extract():
    				try:
    					hook = JdbcHook(jdbc_conn_id="jdbc")
    					sql = """ select * from Account """
    					df = hook.get_pandas_df(sql)
    					df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1)
    					# print(df.head())
    					print(df)
    					tbl_dict = df.to_dict('dict')
    					return tbl_dict
    				except Exception as e:
    					print("Data extract error: " + str(e))
    
    			jdbc_extract()
    
    		sf_extract_and_load = extract_and_load()
    	
  3. このファイルを保存し、Airflow インスタンスをリフレッシュします。DAG リストの中に、「google data catalog_hook」というタイトルの新しいDAG が表示されるはずです。 新しいDAG が追加
  4. このDAG をクリックし、新しく表示される画面で一時停止解除スイッチをクリックして青色にし、トリガー(=play)ボタンをクリックしてDAG を実行します。この操作で、google data catalog_hook.py ファイルのSQL クエリを実行し、結果をCSV としてコード内で指定したファイルパスにエクスポートします。 DAG を実行
  5. 新規のDAG を実行後、Downloads フォルダ(またはPython スクリプト内で選択したフォルダ)を確認し、CSV ファイルが作成されていることを確認します(本ワークフローの場合はaccount.csv です)。 CSV が作成される
  6. CSV ファイルを開くと、Apache Airflow によってGoogle Data Catalog のデータがCSV 形式で利用できるようになったことが確認できます。 Google Data Catalog のデータのCSV ファイル

詳細と無償トライアル

CData JDBC Driver for GoogleDataCatalog の 30日間無償トライアル をダウンロードして、Apache Airflow でリアルタイムGoogle Data Catalog のデータの操作をはじめましょう!ご不明な点があれば、サポートチームにお問い合わせください。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。