各製品の資料を入手。
詳細はこちら →CData
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for Square と組み合わせることで、Airflow からリアルタイムSquare のデータに連携できます。 この記事では、Apache Airflow インスタンスからSquare のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムSquare のデータを扱う上で高いパフォーマンスを提供します。 Square にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのSquare 側でサポートしているSQL 操作をSquare に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってSquare のデータを操作および分析できます。
JDBC URL の作成の補助として、Square JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.square.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Square OAuth 認証標準を使用します。OAuth を使用して認証するには、Square にアプリを登録してOAuthClientId、OAuthClientSecret、CallbackURL を入手します。OAuth の使用方法については、ヘルプドキュメントの「はじめに」セクションをご覧ください。
追加でLocationId を指定する必要がある場合があります。Locations テーブルをクエリすることでLocations のId を取得できます。または、クエリの検索項目にLocationId を設定することもできます。
クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:square:RTK=5246...;OAuthClientId=MyAppId;OAuthClientSecret=MyAppSecret;CallbackURL=http://localhost:33333;LocationId=MyDefaultLocation;InitiateOAuth=GETANDREFRESH
|
Database Driver Class Name | cdata.jdbc.square.SquareDriver |
jdbc:square:RTK=5246...;OAuthClientId=MyAppId;OAuthClientSecret=MyAppSecret;CallbackURL=http://localhost:33333;LocationId=MyDefaultLocation;InitiateOAuth=GETANDREFRESH
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにSquare のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="square_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()