各製品の資料を入手。
詳細はこちら →Apache Airflow でZendesk のデータに連携したワークフローを作る
CData JDBC Driver を使ってApache Airflow からZendesk のデータにアクセスして操作します。
最終更新日:2022-09-07
この記事で実現できるZendesk 連携のシナリオ
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for Zendesk と組み合わせることで、Airflow からリアルタイムZendesk のデータに連携できます。 この記事では、Apache Airflow インスタンスからZendesk のデータに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムZendesk のデータを扱う上で高いパフォーマンスを提供します。 Zendesk にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのZendesk 側でサポートしているSQL 操作をZendesk に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってZendesk のデータを操作および分析できます。
Zendesk への接続を構成する
組み込みの接続文字列デザイナー
JDBC URL の作成の補助として、Zendesk JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.zendesk.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Zendesk 接続プロパティの取得・設定方法
Zendesk に接続するには、https://{subdomain}.zendesk.com の形式でURL(Zendesk Support URL)を設定します。接続後、次のセクションの説明に従ってユーザー認証を行います。
また、TicketMetrics テーブルのアーカイブデータを扱うユーザーは、UseIncrementalAPI プロパティをTrue に設定する必要があります。
Zendesk への認証
Zendesk は、Zendesk インスタンスの設定に応じて、3種類の認証をサポートします。API トークン認証、OAuth 認証、Basic 認証(レガシー)です。
API トークン認証
API トークン認証を使用する場合は、E メールアドレスとApiToken を指定します。 AuthScheme をAPIToken に、User をE メールアドレスに設定し、Zendesk Support の管理画面で以下の設定を行います。
- Token アクセスを有効にします。
- Admin -> Channels-> API で、API トークンを管理します。一度にアクティブにできるトークンは1つだけです。トークンを削除すると、そのトークンは永久に無効化されます。
その他の認証方法についてはヘルプドキュメントを参照してください。

クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:zendesk:RTK=5246...;URL=https://subdomain.zendesk.com;[email protected];Password=test123;InitiateOAuth=GETANDREFRESH
|
Database Driver Class Name | cdata.jdbc.zendesk.ZendeskDriver |
Airflow でJDBC 接続を確立する
- Apache Airflow インスタンスにログインします。
- Airflow インスタンスのナビゲーションバーで、「Admin」にカーソルを合わせ、「Connections」をクリックします。
- 次の画面で「+」マークをクリックして新しい接続を作成します。
- Add Connection フォームで、必要な接続プロパティを入力します。
- Connection Id:接続の名前:zendesk_jdbc
- Connection Type:JDBC Connection
- Connection URL:上記のJDBC 接続URL:
jdbc:zendesk:RTK=5246...;URL=https://subdomain.zendesk.com;[email protected];Password=test123;InitiateOAuth=GETANDREFRESH
- Driver Class:cdata.jdbc.zendesk.ZendeskDriver
- Driver Path:PATH/TO/cdata.jdbc.zendesk.jar
- フォームの下にある「Test」ボタンをクリックし、新規の接続をテストします。
- 新規接続を保存すると、新しく表示される画面に、接続リストに新しい行が追加されたことを示す緑のバナーが表示されます。
DAG を作成する
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにZendesk のデータに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
- はじめに、Home ディレクトリにある「airflow」フォルダに移動します。その中に新しいディレクトリを作成し、タイトルを「dags」とします。 ここに、UI に表示されるAirflow のDAG を構築するPython ファイルを格納します。
- 次に新しいPython ファイルを作成し、タイトルをzendesk_hook.py にします。この新規ファイル内に、次のコードを挿入します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="zendesk_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()
- このファイルを保存し、Airflow インスタンスをリフレッシュします。DAG リストの中に、「zendesk_hook」というタイトルの新しいDAG が表示されるはずです。
- このDAG をクリックし、新しく表示される画面で一時停止解除スイッチをクリックして青色にし、トリガー(=play)ボタンをクリックしてDAG を実行します。この操作で、zendesk_hook.py ファイルのSQL クエリを実行し、結果をCSV としてコード内で指定したファイルパスにエクスポートします。
- 新規のDAG を実行後、Downloads フォルダ(またはPython スクリプト内で選択したフォルダ)を確認し、CSV ファイルが作成されていることを確認します(本ワークフローの場合はaccount.csv です)。
- CSV ファイルを開くと、Apache Airflow によってZendesk のデータがCSV 形式で利用できるようになったことが確認できます。