ノーコードでクラウド上のデータとの連携を実現。
詳細はこちら →Zoho Books Driver の30日間無償トライアルをダウンロード
ダウンロードはこちらCData
こんにちは!ドライバー周りのヘルプドキュメントを担当している古川です。
Apache Airflow を使うと、データエンジニアリングワークフローの作成、スケジューリング、および監視を行うことができます。CData JDBC Driver for ZohoBooks と組み合わせることで、Airflow からリアルタイムZoho Books データに連携できます。 この記事では、Apache Airflow インスタンスからZoho Books データに接続してクエリを実行し、結果をCSV ファイルに保存する方法を紹介します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムZoho Books データを扱う上で高いパフォーマンスを提供します。 Zoho Books にSQL クエリを発行すると、CData ドライバーはフィルタや集計などのZoho Books 側でサポートしているSQL 操作をZoho Books に直接渡し、サポートされていない操作(主にSQL 関数とJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。 組み込みの動的メタデータクエリを使用すると、ネイティブのデータ型を使ってZoho Books データを操作および分析できます。
JDBC URL の作成の補助として、Zoho Books JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからjar ファイルを実行します。
java -jar cdata.jdbc.zohobooks.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Zoho Books はOAuth 認証標準を使用します。OAuth を使用して認証するには、アプリを作成して OAuthClientId、OAuthClientSecret、およびCallbackURL 接続プロパティを設定してください。 認証方法については、ヘルプドキュメントの「OAuth」セクションを参照してください。
クラスタ環境またはクラウドでJDBC ドライバーをホストするには、ライセンス(フルまたはトライアル)およびランタイムキー(RTK)が必要です。本ライセンス(またはトライアル)の取得については、こちらからお問い合わせください。
以下は、JDBC 接続で要求される必須プロパティです。
プロパティ | 値 |
---|---|
Database Connection URL |
jdbc:zohobooks:RTK=5246...;OAuthClientId=MyOAuthClientId;OAuthClientSecret=myOAuthClientSecret;CallbackURL=https://localhost:33333;OrganizationId=MyOrganizationId;InitiateOAuth=GETANDREFRESH
|
Database Driver Class Name | cdata.jdbc.zohobooks.ZohoBooksDriver |
jdbc:zohobooks:RTK=5246...;OAuthClientId=MyOAuthClientId;OAuthClientSecret=myOAuthClientSecret;CallbackURL=https://localhost:33333;OrganizationId=MyOrganizationId;InitiateOAuth=GETANDREFRESH
Airflow におけるDAG は、ワークフローのプロセスを格納するエンティティであり、DAG にトリガーを設定することでワークフローを実行することができます。 今回のワークフローでは、シンプルにZoho Books データに対してSQL クエリを実行し、結果をCSV ファイルに格納します。
import time from datetime import datetime from airflow.decorators import dag, task from airflow.providers.jdbc.hooks.jdbc import JdbcHook import pandas as pd # Dag の宣言 @dag(dag_id="zoho books_hook", schedule_interval="0 10 * * *", start_date=datetime(2022,2,15), catchup=False, tags=['load_csv']) # Dag となる関数を定義(取得するテーブルは必要に応じて変更してください) def extract_and_load(): # Define tasks @task() def jdbc_extract(): try: hook = JdbcHook(jdbc_conn_id="jdbc") sql = """ select * from Account """ df = hook.get_pandas_df(sql) df.to_csv("/{some_file_path}/{name_of_csv}.csv",header=False, index=False, quoting=1) # print(df.head()) print(df) tbl_dict = df.to_dict('dict') return tbl_dict except Exception as e: print("Data extract error: " + str(e)) jdbc_extract() sf_extract_and_load = extract_and_load()