How to Work with Amazon Athena Data in AWS Glue Jobs Using JDBC



Connect to Amazon Athena from AWS Glue jobs using the CData JDBC Driver hosted in Amazon S3.

AWS Glue is an ETL service from Amazon that allows you to easily prepare and load your data for storage and analytics. Using the PySpark module along with AWS Glue, you can create jobs that work with data over JDBC connectivity, loading the data directly into AWS data stores. In this article, we walk through uploading the CData JDBC Driver for Amazon Athena into an Amazon S3 bucket and creating and running an AWS Glue job to extract Amazon Athena data and store it in S3 as a CSV file.

Upload the CData JDBC Driver for Amazon Athena to an Amazon S3 Bucket

In order to work with the CData JDBC Driver for Amazon Athena in AWS Glue, you will need to store it (and any relevant license files) in an Amazon S3 bucket.

  1. Open the Amazon S3 Console.
  2. Select an existing bucket (or create a new one).
  3. Click Upload
  4. Select the JAR file (cdata.jdbc.amazonathena.jar) found in the lib directory in the installation location for the driver.

Configure the Amazon Glue Job

  1. Navigate to ETL -> Jobs from the AWS Glue Console.
  2. Click Add Job to create a new Glue job.
  3. Fill in the Job properties:
    • Name: Fill in a name for the job, for example: AmazonAthenaGlueJob.
    • IAM Role: Select (or create) an IAM role that has the AWSGlueServiceRole and AmazonS3FullAccess permissions policies. The latter policy is necessary to access both the JDBC Driver and the output destination in Amazon S3.
    • Type: Select "Spark".
    • Glue Version: Select "Spark 2.4, Python 3 (Glue Version 1.0)".
    • This job runs: Select "A new script to be authored by you".
      Populate the script properties:
      • Script file name: A name for the script file, for example: GlueAmazonAthenaJDBC
      • S3 path where the script is stored: Fill in or browse to an S3 bucket.
      • Temporary directory: Fill in or browse to an S3 bucket.
    • Expand Security configuration, script libraries and job parameters (optional). For Dependent jars path, fill in or browse to the S3 bucket where you uploaded the JAR file. Be sure to include the name of the JAR file itself in the path, i.e.: s3://mybucket/cdata.jdbc.amazonathena.jar
  4. Click Next. Here you will have the option to add connection to other AWS endpoints. So, if your Destination is Redshift, MySQL, etc, you can create and use connections to those data sources.
  5. Click "Save job and edit script" to create the job.
  6. In the editor that opens, write a python script for the job. You can use the sample script (see below) as an example.

Sample Glue Script

To connect to Amazon Athena using the CData JDBC driver, you will need to create a JDBC URL, populating the necessary connection properties. Additionally, you will need to set the RTK property in the JDBC URL (unless you are using a Beta driver). You can view the licensing file included in the installation for information on how to set this property.

Authenticating to Amazon Athena

To authorize Amazon Athena requests, provide the credentials for an administrator account or for an IAM user with custom permissions: Set AccessKey to the access key Id. Set SecretKey to the secret access key.

Note: Though you can connect as the AWS account administrator, it is recommended to use IAM user credentials to access AWS services.

Obtaining the Access Key

To obtain the credentials for an IAM user, follow the steps below:

  1. Sign into the IAM console.
  2. In the navigation pane, select Users.
  3. To create or manage the access keys for a user, select the user and then select the Security Credentials tab.

To obtain the credentials for your AWS root account, follow the steps below:

  1. Sign into the AWS Management console with the credentials for your root account.
  2. Select your account name or number and select My Security Credentials in the menu that is displayed.
  3. Click Continue to Security Credentials and expand the Access Keys section to manage or create root account access keys.

Authenticating from an EC2 Instance

If you are using the CData Data Provider for Amazon Athena 2018 from an EC2 Instance and have an IAM Role assigned to the instance, you can use the IAM Role to authenticate. To do so, set UseEC2Roles to true and leave AccessKey and SecretKey empty. The CData Data Provider for Amazon Athena 2018 will automatically obtain your IAM Role credentials and authenticate with them.

Authenticating as an AWS Role

In many situations it may be preferable to use an IAM role for authentication instead of the direct security credentials of an AWS root user. An AWS role may be used instead by specifying the RoleARN. This will cause the CData Data Provider for Amazon Athena 2018 to attempt to retrieve credentials for the specified role. If you are connecting to AWS (instead of already being connected such as on an EC2 instance), you must additionally specify the AccessKey and SecretKey of an IAM user to assume the role for. Roles may not be used when specifying the AccessKey and SecretKey of an AWS root user.

Authenticating with MFA

For users and roles that require Multi-factor Authentication, specify the MFASerialNumber and MFAToken connection properties. This will cause the CData Data Provider for Amazon Athena 2018 to submit the MFA credentials in a request to retrieve temporary authentication credentials. Note that the duration of the temporary credentials may be controlled via the TemporaryTokenDuration (default 3600 seconds).

Connecting to Amazon Athena

In addition to the AccessKey and SecretKey properties, specify Database, S3StagingDirectory and Region. Set Region to the region where your Amazon Athena data is hosted. Set S3StagingDirectory to a folder in S3 where you would like to store the results of queries.

If Database is not set in the connection, the data provider connects to the default database set in Amazon Athena.

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Amazon Athena JDBC Driver. Either double-click the JAR file or execute the JAR file from the command-line.

java -jar cdata.jdbc.amazonathena.jar

Fill in the connection properties and copy the connection string to the clipboard.

To host the JDBC driver in Amazon S3, you will need a license (full or trial) and a Runtime Key (RTK). For more information on obtaining this license (or a trial), contact our sales team.

Below is a sample script that uses the CData JDBC driver with the PySpark and AWSGlue modules to extract Amazon Athena data and write it to an S3 bucket in CSV format. Make any necessary changes to the script to suit your needs and save the job.

import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.dynamicframe import DynamicFrame from awsglue.job import Job args = getResolvedOptions(sys.argv, ['JOB_NAME']) sparkContext = SparkContext() glueContext = GlueContext(sparkContext) sparkSession = glueContext.spark_session ##Use the CData JDBC driver to read Amazon Athena data from the Customers table into a DataFrame ##Note the populated JDBC URL and driver class name source_df = sparkSession.read.format("jdbc").option("url","jdbc:amazonathena:RTK=5246...;AWSAccessKey='a123';AWSSecretKey='s123';AWSRegion='IRELAND';Database='sampledb';S3StagingDirectory='s3://bucket/staging/';").option("dbtable","Customers").option("driver","cdata.jdbc.amazonathena.AmazonAthenaDriver").load() glueJob = Job(glueContext) glueJob.init(args['JOB_NAME'], args) ##Convert DataFrames to AWS Glue's DynamicFrames Object dynamic_dframe = DynamicFrame.fromDF(source_df, glueContext, "dynamic_df") ##Write the DynamicFrame as a file in CSV format to a folder in an S3 bucket. ##It is possible to write to any Amazon data store (SQL Server, Redshift, etc) by using any previously defined connections. retDatasink4 = glueContext.write_dynamic_frame.from_options(frame = dynamic_dframe, connection_type = "s3", connection_options = {"path": "s3://mybucket/outfiles"}, format = "csv", transformation_ctx = "datasink4") glueJob.commit()

Run the Glue Job

With the script written, we are ready to run the Glue job. Click Run Job and wait for the extract/load to complete. You can view the status of the job from the Jobs page in the AWS Glue Console. Once the Job has succeeded, you will have a CSV file in your S3 bucket with data from the Amazon Athena Customers table.

Using the CData JDBC Driver for Amazon Athena in AWS Glue, you can easily create ETL jobs for Amazon Athena data, whether writing the data to an S3 bucket or loading it into any other AWS data store.

Ready to get started?

Download a free trial of the Amazon Athena Driver to get started:

 Download Now

Learn more:

Amazon Athena Icon Amazon Athena JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with Amazon Athena.