Discover how a bimodal integration strategy can address the major data management challenges facing your organization today.
Get the Report →Analyze Coinbase Data in R
Use standard R functions and the development environment of your choice to analyze Coinbase data with the CData JDBC Driver for Coinbase.
Access Coinbase data with pure R script and standard SQL on any machine where R and Java can be installed. You can use the CData JDBC Driver for Coinbase and the RJDBC package to work with remote Coinbase data in R. By using the CData Driver, you are leveraging a driver written for industry-proven standards to access your data in the popular, open-source R language. This article shows how to use the driver to execute SQL queries to Coinbase and visualize Coinbase data by calling standard R functions.
Install R
You can match the driver's performance gains from multi-threading and managed code by running the multithreaded Microsoft R Open or by running open R linked with the BLAS/LAPACK libraries. This article uses Microsoft R Open 3.2.3, which is preconfigured to install packages from the Jan. 1, 2016 snapshot of the CRAN repository. This snapshot ensures reproducibility.
Load the RJDBC Package
To use the driver, download the RJDBC package. After installing the RJDBC package, the following line loads the package:
library(RJDBC)
Connect to Coinbase as a JDBC Data Source
You will need the following information to connect to Coinbase as a JDBC data source:
- Driver Class: Set this to cdata.jdbc.api.APIDriver
- Classpath: Set this to the location of the driver JAR. By default this is the lib subfolder of the installation folder.
The DBI functions, such as dbConnect and dbSendQuery, provide a unified interface for writing data access code in R. Use the following line to initialize a DBI driver that can make JDBC requests to the CData JDBC Driver for Coinbase:
driver <- JDBC(driverClass = "cdata.jdbc.api.APIDriver", classPath = "MyInstallationDir\lib\cdata.jdbc.api.jar", identifier.quote = "'")
You can now use DBI functions to connect to Coinbase and execute SQL queries. Initialize the JDBC connection with the dbConnect function.
Start by setting the Profile connection property to the location of the Coinbase Profile on disk (e.g. C:\profiles\Coinbase.apip). Next, set the ProfileSettings connection property to the connection string for Coinbase (see below).
Coinbase API Profile Settings
Coinbase uses OAuth-based authentication.
First you need to register an OAuth app with Coinbase. This is done from your account under 'Settings' > 'API Access' > 'New OAuth2 Application'.
After setting the following connection properties, you are ready to connect:
- AuthScheme: Set this to OAuth.
- InitiateOAuth: Set this to GETANDREFRESH. You can use InitiateOAuth to manage the process to obtain the OAuthAccessToken.
- OAuthClientId: Set this to the ClientID that is specified in you app settings.
- OAuthClientSecret: Set this to the ClientSecret that is specified in you app settings.
- CallbackURL: Set this to the Redirect URI you specified in your app settings.
- InitiateOAuth: Set this to GETANDREFRESH. You can use InitiateOAuth to manage the process to obtain the OAuthAccessToken.
Built-in Connection String Designer
For assistance in constructing the JDBC URL, use the connection string designer built into the Coinbase JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.
java -jar cdata.jdbc.api.jar
Fill in the connection properties and copy the connection string to the clipboard.
Below is a sample dbConnect call, including a typical JDBC connection string:
conn <- dbConnect(driver,"jdbc:api:Profile=C:\profiles\Coinbase.apip;Authscheme=OAuth;OAuthClientId=your_client_id;OAuthClientSecret=your_client_secret;CallbackUrl=your_callback_url;")
Schema Discovery
The driver models Coinbase APIs as relational tables, views, and stored procedures. Use the following line to retrieve the list of tables:
dbListTables(conn)
Execute SQL Queries
You can use the dbGetQuery function to execute any SQL query supported by the Coinbase API:
deposits <- dbGetQuery(conn,"SELECT Id, Amount FROM Deposits WHERE Committed = 'true'")
You can view the results in a data viewer window with the following command:
View(deposits)
Plot Coinbase Data
You can now analyze Coinbase data with any of the data visualization packages available in the CRAN repository. You can create simple bar plots with the built-in bar plot function:
par(las=2,ps=10,mar=c(5,15,4,2))
barplot(deposits$Amount, main="Coinbase Deposits", names.arg = deposits$Id, horiz=TRUE)