Ready to get started?

Download a free trial of the IBM Cloud Data Engine Connector to get started:

 Download Now

Learn more:

IBM Cloud Data Engine Icon IBM Cloud Data Engine Python Connector

Python Connector Libraries for IBM Cloud Data Engine Data Connectivity. Integrate IBM Cloud Data Engine with popular Python tools like Pandas, SQLAlchemy, Dash & petl.

Use pandas to Visualize IBM Cloud Data Engine Data in Python



The CData Python Connector for IBM Cloud Data Engine enables you use pandas and other modules to analyze and visualize live IBM Cloud Data Engine data in Python.

The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for IBM Cloud Data Engine, the pandas & Matplotlib modules, and the SQLAlchemy toolkit, you can build IBM Cloud Data Engine-connected Python applications and scripts for visualizing IBM Cloud Data Engine data. This article shows how to use the pandas, SQLAlchemy, and Matplotlib built-in functions to connect to IBM Cloud Data Engine data, execute queries, and visualize the results.

With built-in optimized data processing, the CData Python Connector offers unmatched performance for interacting with live IBM Cloud Data Engine data in Python. When you issue complex SQL queries from IBM Cloud Data Engine, the driver pushes supported SQL operations, like filters and aggregations, directly to IBM Cloud Data Engine and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Connecting to IBM Cloud Data Engine Data

Connecting to IBM Cloud Data Engine data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.

IBM Cloud Data Engine uses the OAuth and HMAC authentication standards. See the "Getting Started" chapter of the help documentation for a guide to using OAuth.

Follow the procedure below to install the required modules and start accessing IBM Cloud Data Engine through Python objects.

Install Required Modules

Use the pip utility to install the pandas & Matplotlib modules and the SQLAlchemy toolkit:

pip install pandas
pip install matplotlib
pip install sqlalchemy

Be sure to import the module with the following:

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Visualize IBM Cloud Data Engine Data in Python

You can now connect with a connection string. Use the create_engine function to create an Engine for working with IBM Cloud Data Engine data.

engine = create_engine("ibmclouddataengine:///?Api Key=MyAPIKey&Instance CRN=myInstanceCRN&Region=myRegion&Schema=mySchema&OAuth Client Id=myOAuthClientId&OAuth Client Secret=myOAuthClientSecret&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

Execute SQL to IBM Cloud Data Engine

Use the read_sql function from pandas to execute any SQL statement and store the resultset in a DataFrame.

df = pandas.read_sql("SELECT Id, Status FROM Jobs WHERE UserId = 'user@domain.com'", engine)

Visualize IBM Cloud Data Engine Data

With the query results stored in a DataFrame, use the plot function to build a chart to display the IBM Cloud Data Engine data. The show method displays the chart in a new window.

df.plot(kind="bar", x="Id", y="Status")
plt.show()

Free Trial & More Information

Download a free, 30-day trial of the CData Python Connector for IBM Cloud Data Engine to start building Python apps and scripts with connectivity to IBM Cloud Data Engine data. Reach out to our Support Team if you have any questions.



Full Source Code

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("ibmclouddataengine:///?Api Key=MyAPIKey&Instance CRN=myInstanceCRN&Region=myRegion&Schema=mySchema&OAuth Client Id=myOAuthClientId&OAuth Client Secret=myOAuthClientSecret&InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
df = pandas.read_sql("SELECT Id, Status FROM Jobs WHERE UserId = 'user@domain.com'", engine)

df.plot(kind="bar", x="Id", y="Status")
plt.show()