Integrating LangChain with Odoo Data via CData Connect AI
LangChain is a framework used by developers, data engineers, and AI practitioners for building AI-powered applications and workflows by combining reasoning models (LLMs), tools, APIs, and data connectors. By integrating LangChain with CData Connect AI through the built-in MCP Server, workflows can effortlessly access and interact with live Odoo data in real time.
CData Connect AI offers a secure, low-code environment to connect Odoo and other data sources, removing the need for complex ETL and enabling seamless automation across business applications with live data.
This article outlines how to configure Odoo connectivity in CData Connect AI, register the MCP server with LangChain, and build a workflow that queries Odoo data in real time.
Prerequisites
- An account in CData Connect AI
- Python version 3.10 or higher, to install the LangChain and LangGraph packages
- Generate and save an OpenAI API key
- Install Visual Studio Code in your system
About Odoo Data Integration
Accessing and integrating live data from Odoo has never been easier with CData. Customers rely on CData connectivity to:
- Access live data from both Odoo API 8.0+ and Odoo.sh Cloud ERP.
-
Extend the native Odoo features with intelligent handling of many-to-one, one-to-many, and many-to-many data properties. CData's connectivity solutions also intelligently handle complex data properties within Odoo. In addition to columns with simple values like text and dates, there are also columns that contain multiple values on each row. The driver decodes these kinds of values differently, depending upon the type of column the value comes from:
- Many-to-one columns are references to a single row within another model. Within CData solutions, many-to-one columns are represented as integers, whose value is the ID to which they refer in the other model.
- Many-to-many columns are references to many rows within another model. Within CData solutions, many-to-many columns are represented as text containing a comma-separated list of integers. Each value in that list is the ID of a row that is being referenced.
- One-to-many columns are references to many rows within another model - they are similar to many-to-many columns (comma-separated lists of integers), except that each row in the referenced model must belong to only one in the main model.
- Use SQL stored procedures to call server-side RFCs within Odoo.
Users frequently integrate Odoo with analytics tools such as Power BI and Qlik Sense, and leverage our tools to replicate Odoo data to databases or data warehouses.
Getting Started
Step 1: Configure Odoo Connectivity for LangChain
Before LangChain can access Odoo, a Odoo connection must be created in CData Connect AI. This connection is then exposed to LangChain through the remote MCP server.
- Log in to Connect AI click Sources, and then click + Add Connection
- From the available data sources, choose Odoo
-
Enter the necessary authentication properties to connect to Odoo
To connect, set the Url to a valid Odoo site, User and Password to the connection details of the user you are connecting with, and Database to the Odoo database.
- Click Save & Test
- Once authenticated, open the Permissions tab in the Odoo connection and configure user-based permissions as required
Generate a Personal Access Token (PAT)
LangChain authenticates to Connect AI using an account email and a Personal Access Token (PAT). Creating separate PATs for each integration is recommended to maintain access control granularity.
- In Connect AI, select the Gear icon in the top-right to open Settings
- Under Access Tokens, select Create PAT
- Provide a descriptive name for the token and select Create
- Copy the token and store it securely. The PAT will only be visible during creation
With the Odoo connection configured and a PAT generated, LangChain is prepared to connect to Odoo data through the CData MCP server.
Note: You can also generate a PAT from LangChain in the Integrations section of Connect AI. Simply click Connect --> Create PAT to generate it.
Step 2: Connect to the MCP server in LangChain
To connect LangChain with CData Connect AI Remote MCP Server and use OpenAI (ChatGPT) for reasoning, you need to configure your MCP server endpoint and authentication values in a config.py file. These values allow LangChain to call the MCP server tools, while OpenAI handles the natural language reasoning.
- Create a folder for LangChain MCP
- Create two Python files within the folder: config.py and langchain.py
- In config.py, create a class Config to define your MCP server authentication and URL. You need to provide your Base64-encoded CData Connect AI username and PAT (obtained in the prerequisites):
class Config: MCP_BASE_URL = "https://mcp.cloud.cdata.com/mcp" #MCP Server URL MCP_AUTH = "base64encoded(EMAIL:PAT)" #Base64 encoded Connect AI Email:PATNote: You can create the base64 encoded version of MCP_AUTH using any Base64 encoding tool.
- In langchain.py, set up your MCP server and MCP client to call the tools and prompts:
""" Integrates a LangChain ReAct agent with CData Connect AI MCP server. The script demonstrates fetching, filtering, and using tools with an LLM for agent-based reasoning. """ import asyncio from langchain_mcp_adapters.client import MultiServerMCPClient from langchain_openai import ChatOpenAI from langgraph.prebuilt import create_react_agent from config import Config async def main(): # Initialize MCP client with one or more server URLs mcp_client = MultiServerMCPClient( connections={ "default": { # you can name this anything "transport": "streamable_http", "url": Config.MCP_BASE_URL, "headers": {"Authorization": f"Basic {Config.MCP_AUTH}"}, } } ) # Load remote MCP tools exposed by the server all_mcp_tools = await mcp_client.get_tools() print("Discovered MCP tools:", [tool.name for tool in all_mcp_tools]) # Create and run the ReAct style agent llm = ChatOpenAI( model="gpt-4o", temperature=0.2, api_key="YOUR_OPEN_API_KEY" #Use your OpenAI API Key here, this can be found here: https://platform.openai.com/ ) agent = create_react_agent(llm, all_mcp_tools) user_prompt = "How many tables are available in Odoo1?" #Change prompts as per need print(f" User prompt: {user_prompt}") # Send a prompt asking the agent to use the MCP tools response = await agent.ainvoke( { "messages": [{ "role": "user", "content": (user_prompt),}]} ) # Print out the agent's final response final_msg = response["messages"][-1].content print("Agent final response:", final_msg) if __name__ == "__main__": asyncio.run(main())
Step 3: Install the LangChain and LangGraph packages
Since this workflow uses LangChain together with CData Connect AI MCP and integrates OpenAI for reasoning, you need to install the required Python packages.
Run the following command in your project terminal:
pip install langchain-mcp-adapters langchain-openai langgraph
Step 4: Prompt Odoo using LangChain (via the MCP server)
- When the installation finishes, run python langchain.py to execute the script
- The script connects to the MCP server and discovers the CData Connect AI MCP tools available for querying your connected data
- Supply a prompt (e.g., "How many tables are available in Odoo?")
- Accordingly, the agent responds with the results
Get CData Connect AI
To get live data access to 300+ SaaS, Big Data, and NoSQL sources directly from your cloud applications, try CData Connect AI today!