Connecting Mastra with Snowflake Data via CData Connect AI MCP Server
Mastra is designed for developers and enterprise teams building intelligent, composable AI agents. Its modular framework and declarative architecture make it simple to orchestrate agents, integrate LLMs, and automate data-driven workflows. But when agents need to work with data beyond their local memory or predefined APIs, many implementations rely on custom middleware or scheduled syncs to copy data from external systems into local stores. This approach adds complexity, increases maintenance overhead, introduces latency, and limits the real-time potential of your agents.
CData Connect AI bridges this gap with live, direct connectivity to more than 300 enterprise applications, databases, ERPs, and analytics platforms. Through CData's remote Model Context Protocol (MCP) Server, Mastra agents can securely query, read, and act on real-time data without replication. The result is grounded responses, faster reasoning, and automated decision-making across systems all with stronger governance and fewer moving parts.
This article outlines the steps required to configure CData Connect AI MCP connectivity, register the MCP server in Mastra Studio, and build an agent that queries live Snowflake data in real time.
About Snowflake Data Integration
CData simplifies access and integration of live Snowflake data. Our customers leverage CData connectivity to:
- Reads and write Snowflake data quickly and efficiently.
- Dynamically obtain metadata for the specified Warehouse, Database, and Schema.
- Authenticate in a variety of ways, including OAuth, OKTA, Azure AD, Azure Managed Service Identity, PingFederate, private key, and more.
Many CData users use CData solutions to access Snowflake from their preferred tools and applications, and replicate data from their disparate systems into Snowflake for comprehensive warehousing and analytics.
For more information on integrating Snowflake with CData solutions, refer to our blog: https://www.cdata.com/blog/snowflake-integrations.
Getting Started
Prerequisites
Before starting, make sure you have:
- A CData Connect AI account
- Node.js 18+ and npm installed
- A working Mastra project (created via npm create mastra@latest)
- Access to Snowflake
Credentials checklist
Ensure you have these credentials ready for the connection:
- USERNAME: Your CData email login
- PAT: Connect AI, go to Settings and click on Access Tokens (copy once)
- MCP_BASE_URL: https://mcp.cloud.cdata.com/mcp
Step 1: Configure Snowflake connectivity for Mastra
Connectivity to Snowflake from Mastra is made possible through CData Connect AI Remote MCP. To interact with Snowflake data from Mastra, we start by creating and configuring a Snowflake connection in CData Connect AI.
- Log into Connect AI, click Sources, and then click Add Connection
- Select "Snowflake" from the Add Connection panel
-
Enter the necessary authentication properties to connect to Snowflake.
To connect to Snowflake:
- Set User and Password to your Snowflake credentials and set the AuthScheme property to PASSWORD or OKTA.
- Set URL to the URL of the Snowflake instance (i.e.: https://myaccount.snowflakecomputing.com).
- Set Warehouse to the Snowflake warehouse.
- (Optional) Set Account to your Snowflake account if your URL does not conform to the format above.
- (Optional) Set Database and Schema to restrict the tables and views exposed.
See the Getting Started guide in the CData driver documentation for more information.
- Click Save & Test
-
Navigate to the Permissions tab in the Add Snowflake Connection page and update the User-based permissions.
Add a Personal Access Token
A Personal Access Token (PAT) is used to authenticate the connection to Connect AI from Mastra. It is best practice to create a separate PAT for each service to maintain granularity of access.
- Click on the Gear icon () at the top right of the Connect AI app to open the settings page.
- On the Settings page, go to the Access Tokens section and click Create PAT.
-
Give the PAT a name and click Create.
- The personal access token is only visible at creation, so be sure to copy it and store it securely for future use.
With the connection configured and a PAT generated, we are ready to connect to Snowflake data from Mastra.
Step 2: Set up the Mastra project
- Open a terminal and navigate to your desired folder
- Create a new project:
npm create mastra@latest
- Open the folder in VS Code
- Install the required Mastra dependencies:
npm install @mastra/core @mastra/libsql @mastra/memory
- Then install the MCP integration package separately:
npm install @mastra/mcp
Step 3: Configure environment variables
Create a .env file at the project root with the following keys:
OPENAI_API_KEY=sk-... [email protected] CDATA_CONNECT_AI_PASSWORD=your_PAT
Restart your dev server after saving changes:
npm run dev
Step 4: Add the CData Connect AI agent
Create a file src/mastra/agents/connect-ai-agent.ts with the following code:
import { Agent } from "@mastra/core/agent";
import { Memory } from "@mastra/memory";
import { LibSQLStore } from "@mastra/libsql";
import { MCPClient } from "@mastra/mcp";
const mcpClient = new MCPClient({
servers: {
cdataConnectAI: {
url: new URL("https://connect.cdata.com/mcp/"),
requestInit: {
headers: {
Authorization: `Basic ${Buffer.from(
`${process.env.CDATA_CONNECT_AI_USER}:${process.env.CDATA_CONNECT_AI_PASSWORD}`
).toString("base64")}`,
},
},
},
},
});
export const connectAIAgent = new Agent({
name: "Connect AI Agent",
instructions: "You are a data exploration and analysis assistant with access to CData Connect AI.",
model: "openai/gpt-4o-mini",
tools: await mcpClient.getTools(),
memory: new Memory({
storage: new LibSQLStore({ url: "file:../mastra.db" }),
}),
});
Step 5: Update index.ts to register the agent
Replace the contents of src/mastra/index.ts with:
import { Mastra } from "@mastra/core/mastra";
import { PinoLogger } from "@mastra/loggers";
import { LibSQLStore } from "@mastra/libsql";
import { connectAIAgent } from "./agents/connect-ai-agent.js";
export const mastra = new Mastra({
agents: { connectAIAgent },
storage: new LibSQLStore({ url: "file:../mastra.db" }),
logger: new PinoLogger({ name: "Mastra", level: "info" }),
observability: { default: { enabled: true } },
});
Step 6: Run and verify the connection
Start your Mastra server:
npm run dev
Step 7: Run a live query in Mastra Studio
In Mastra Studio, open the chat interface and enter one of the following sample prompts:
List available catalogs from my connected data sources.
Build real-time, data-aware agents with Mastra and CData
Mastra and CData Connect AI together enable powerful AI-driven workflows where agents have live access to enterprise data and act intelligently without sync pipelines or manual integration logic.
Start your free trial today to see how CData can empower Mastra with live, secure access to 300+ external systems.