Integrating LangChain with SQL Server Data via CData Connect AI
LangChain is a framework used by developers, data engineers, and AI practitioners for building AI-powered applications and workflows by combining reasoning models (LLMs), tools, APIs, and data connectors. By integrating LangChain with CData Connect AI through the built-in MCP Server, workflows can effortlessly access and interact with live SQL Server data in real time.
CData Connect AI offers a secure, low-code environment to connect SQL Server and other data sources, removing the need for complex ETL and enabling seamless automation across business applications with live data.
This article outlines how to configure SQL Server connectivity in CData Connect AI, register the MCP server with LangChain, and build a workflow that queries SQL Server data in real time.
Prerequisites
- An account in CData Connect AI
- Python version 3.10 or higher, to install the LangChain and LangGraph packages
- Generate and save an OpenAI API key
- Install Visual Studio Code in your system
Step 1: Configure SQL Server Connectivity for LangChain
Before LangChain can access SQL Server, a SQL Server connection must be created in CData Connect AI. This connection is then exposed to LangChain through the remote MCP server.
- Log in to Connect AI click Sources, and then click + Add Connection
- From the available data sources, choose SQL Server
-
Enter the necessary authentication properties to connect to SQL Server
Connecting to Microsoft SQL Server
Connect to Microsoft SQL Server using the following properties:
- Server: The name of the server running SQL Server.
- User: The username provided for authentication with SQL Server.
- Password: The password associated with the authenticating user.
- Database: The name of the SQL Server database.
Connecting to Azure SQL Server and Azure Data Warehouse
You can authenticate to Azure SQL Server or Azure Data Warehouse by setting the following connection properties:
- Server: The server running Azure. You can find this by logging into the Azure portal and navigating to "SQL databases" (or "SQL data warehouses") -> "Select your database" -> "Overview" -> "Server name."
- User: The name of the user authenticating to Azure.
- Password: The password associated with the authenticating user.
- Database: The name of the database, as seen in the Azure portal on the SQL databases (or SQL warehouses) page.
SSH Connectivity for SQL Server
You can use SSH (Secure Shell) to authenticate with SQL Server, whether the instance is hosted on-premises or in supported cloud environments. SSH authentication ensures that access is encrypted (as compared to direct network connections).
SSH Connections to SQL Server in Password Auth Mode
To connect to SQL Server via SSH in Password Auth mode, set the following connection properties:
- User: SQL Server User name
- Password: SQL Server Password
- Database: SQL Server database name
- Server: SQL Server Server name
- Port: SQL Server port number like 3306
- UserSSH: "true"
- SSHAuthMode: "Password"
- SSHPort: SSH Port number
- SSHServer: SSH Server name
- SSHUser: SSH User name
- SSHPassword: SSH Password
SSH Connections to SQL Server in Public Key Auth Mode
To connect to SQL Server via SSH in Password Auth mode, set the following connection properties:
- User: SQL Server User name
- Password: SQL Server Password
- Database: SQL Server database name
- Server: SQL Server Server name
- Port: SQL Server port number like 3306
- UserSSH: "true"
- SSHAuthMode: "Public_Key"
- SSHPort: SSH Port number
- SSHServer: SSH Server name
- SSHUser: SSH User name
- SSHClientCret: the path for the public key certificate file
- Click Save & Test
- Once authenticated, open the Permissions tab in the SQL Server connection and configure user-based permissions as required
Generate a Personal Access Token (PAT)
LangChain authenticates to Connect AI using an account email and a Personal Access Token (PAT). Creating separate PATs for each integration is recommended to maintain access control granularity.
- In Connect AI, select the Gear icon in the top-right to open Settings
- Under Access Tokens, select Create PAT
- Provide a descriptive name for the token and select Create
- Copy the token and store it securely. The PAT will only be visible during creation
With the SQL Server connection configured and a PAT generated, LangChain is prepared to connect to SQL Server data through the CData MCP server.
Note: You can also generate a PAT from LangChain in the Integrations section of Connect AI. Simply click Connect --> Create PAT to generate it.
Step 2: Connect to the MCP server in LangChain
To connect LangChain with CData Connect AI Remote MCP Server and use OpenAI (ChatGPT) for reasoning, you need to configure your MCP server endpoint and authentication values in a config.py file. These values allow LangChain to call the MCP server tools, while OpenAI handles the natural language reasoning.
- Create a folder for LangChain MCP
- Create two Python files within the folder: config.py and langchain.py
- In config.py, create a class Config to define your MCP server authentication and URL. You need to provide your Base64-encoded CData Connect AI username and PAT (obtained in the prerequisites):
class Config: MCP_BASE_URL = "https://mcp.cloud.cdata.com/mcp" #MCP Server URL MCP_AUTH = "base64encoded(EMAIL:PAT)" #Base64 encoded Connect AI Email:PATNote: You can create the base64 encoded version of MCP_AUTH using any Base64 encoding tool.
- In langchain.py, set up your MCP server and MCP client to call the tools and prompts:
""" Integrates a LangChain ReAct agent with CData Connect AI MCP server. The script demonstrates fetching, filtering, and using tools with an LLM for agent-based reasoning. """ import asyncio from langchain_mcp_adapters.client import MultiServerMCPClient from langchain_openai import ChatOpenAI from langgraph.prebuilt import create_react_agent from config import Config async def main(): # Initialize MCP client with one or more server URLs mcp_client = MultiServerMCPClient( connections={ "default": { # you can name this anything "transport": "streamable_http", "url": Config.MCP_BASE_URL, "headers": {"Authorization": f"Basic {Config.MCP_AUTH}"}, } } ) # Load remote MCP tools exposed by the server all_mcp_tools = await mcp_client.get_tools() print("Discovered MCP tools:", [tool.name for tool in all_mcp_tools]) # Create and run the ReAct style agent llm = ChatOpenAI( model="gpt-4o", temperature=0.2, api_key="YOUR_OPEN_API_KEY" #Use your OpenAI API Key here, this can be found here: https://platform.openai.com/ ) agent = create_react_agent(llm, all_mcp_tools) user_prompt = "How many tables are available in SQL1?" #Change prompts as per need print(f" User prompt: {user_prompt}") # Send a prompt asking the agent to use the MCP tools response = await agent.ainvoke( { "messages": [{ "role": "user", "content": (user_prompt),}]} ) # Print out the agent's final response final_msg = response["messages"][-1].content print("Agent final response:", final_msg) if __name__ == "__main__": asyncio.run(main())
Step 3: Install the LangChain and LangGraph packages
Since this workflow uses LangChain together with CData Connect AI MCP and integrates OpenAI for reasoning, you need to install the required Python packages.
Run the following command in your project terminal:
pip install langchain-mcp-adapters langchain-openai langgraph
Step 4: Prompt SQL Server using LangChain (via the MCP server)
- When the installation finishes, run python langchain.py to execute the script
- The script connects to the MCP server and discovers the CData Connect AI MCP tools available for querying your connected data
- Supply a prompt (e.g., "How many tables are available in SQL Server?")
- Accordingly, the agent responds with the results
Get CData Connect AI
To get live data access to 300+ SaaS, Big Data, and NoSQL sources directly from your cloud applications, try CData Connect AI today!