Process & Analyze Email Data in Azure Databricks

Ready to get started?

Download for a free trial:

Download Now

Learn more:

Email JDBC Driver

Rapidly create and deploy powerful Java applications that integrate powerful Email send and receive capabilities. Send & Receive Email through POP3, IMAP, and SMTP, Verify Addresses, and more!



Host the CData JDBC Driver for Email in Azure and use Databricks to perform data engineering and data science on live Email data.

Databricks is a cloud-based service that provides data processing capabilities through Apache Spark. When paired with the CData JDBC Driver, customers can use Databricks to perform data engineering and data science on live Email data. This article walks through hosting the CData JDBC Driver in Azure, as well as connecting to and processing live Email data in Databricks.

With built-in optimized data processing, the CData JDBC Driver offers unmatched performance for interacting with live Email data. When you issue complex SQL queries to Email, the driver pushes supported SQL operations, like filters and aggregations, directly to Email and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Email data using native data types.

Install the CData JDBC Driver in Azure

To work with live Email data in Databricks, install the driver on your Azure cluster.

  1. Navigate to your Databricks administration screen and select the target cluster.
  2. On the Libraries tab, click "Install New."
  3. Select "Upload" as the Library Source and "Jar" as the Library Type.
  4. Upload the JDBC JAR file (cdata.jdbc.email.jar) from the installation location (typically C:\Program Files\CData\CData JDBC Driver for Email\lib).

Connect to Email from Databricks

With the JAR file installed, we are ready to work with live Email data in Databricks. Start by creating a new notebook in your workspace. Name the notebook, select Python as the language (though Scala is available as well), and choose the cluster where you installed the JDBC driver. When the notebook launches, we can configure the connection, query Email, and create a basic report.

Configure the Connection to Email

Connect to Email by referencing the class for the JDBC Driver and constructing a connection string to use in the JDBC URL. Additionally, you will need to set the RTK property in the JDBC URL (unless you are using a Beta driver). You can view the licensing file included in the installation for information on how to set this property.

driver = "cdata.jdbc.email.EmailDriver"
url = "jdbc:email:RTK=5246...;User=username@gmail.com;Password=password;Server=imap.gmail.com;Port=993;SMTP Server=smtp.gmail.com;SMTP Port=465;SSL Mode=EXPLICIT;Protocol=IMAP;Mailbox=Inbox;"

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Email JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.email.jar

Fill in the connection properties and copy the connection string to the clipboard.

The User and Password properties, under the Authentication section, must be set to valid credentials. The Server must be specified to retrieve emails and the SMTPServer must be specified to send emails.

Load Email Data

Once the connection is configured, you can load Email data as a dataframe using the CData JDBC Driver and the connection information.

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "Mailboxes") \
	.load ()

Display Email Data

Check the loaded Email data by calling the display function.

display (remote_table.select ("Mailbox"))

Analyze Email Data in Azure Databricks

If you want to process data with Databricks SparkSQL, register the loaded data as a Temp View.

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

The SparkSQL below retrieves the Email data for analysis.

% sql

SELECT Mailbox, RecentMessagesCount FROM Mailboxes

The data from Email is only available in the target notebook. If you want to use it with other users, save it as a table.

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

Download a free, 30-day trial of the CData JDBC Driver for Email and start working with your live Email data in Apache NiFi. Reach out to our Support Team if you have any questions.